Conditions of gas–solid two-phase flow formed in a vertical screw conveyor

This study investigates the velocity and pressure distributions of gas flow field in a vertical screw conveyor through EDEM simulation. Results show that the vertical velocity of gas is the highest and that the minimum pressure is negative, which is at the exit, thereby aiding in the upward transpor...

Full description

Bibliographic Details
Main Authors: Sun Xiaoxia, Meng Wenjun, Yuan Yuan
Format: Article
Language:English
Published: SAGE Publishing 2018-09-01
Series:Advances in Mechanical Engineering
Online Access:https://doi.org/10.1177/1687814018797761
Description
Summary:This study investigates the velocity and pressure distributions of gas flow field in a vertical screw conveyor through EDEM simulation. Results show that the vertical velocity of gas is the highest and that the minimum pressure is negative, which is at the exit, thereby aiding in the upward transportation of particles. The particle state in the vertical screw conveyor is obtained without considering gas (EDEM simulation) and by considering gas (EDEM + FLUENT simulation), respectively. Investigation of the relationship among the screw critical speed, screw diameter, and particle size shows that the conditions of gas–solid two-phase flow form in the vertical screw conveyor. A test is designed to verify the correctness of the conclusions. The results of this study lay a foundation for the development of design methods based on gas–solid two-phase flow in a vertical screw conveyor.
ISSN:1687-8140