Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions

Uncertainty quantification is critical in the inversion of CO2 surface fluxes from atmospheric concentration measurements. Here, we estimate the main hyperparameters of the error covariance matrices for a priori fluxes and CO2 concentrations, that is, the variances and the correlation lengths, using...

Full description

Bibliographic Details
Main Authors: Lin Wu, Marc Bocquet, Frédéric Chevallier, Thomas Lauvaux, Kenneth Davis
Format: Article
Language:English
Published: Taylor & Francis Group 2013-11-01
Series:Tellus: Series B, Chemical and Physical Meteorology
Subjects:
Online Access:http://www.tellusb.net/index.php/tellusb/article/download/20894/pdf_1
id doaj-540ad80c4e714870b491a5b202b8ab1b
record_format Article
spelling doaj-540ad80c4e714870b491a5b202b8ab1b2020-11-25T01:09:26ZengTaylor & Francis GroupTellus: Series B, Chemical and Physical Meteorology1600-08892013-11-0165011310.3402/tellusb.v65i0.20894Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversionsLin WuMarc BocquetFrédéric ChevallierThomas LauvauxKenneth DavisUncertainty quantification is critical in the inversion of CO2 surface fluxes from atmospheric concentration measurements. Here, we estimate the main hyperparameters of the error covariance matrices for a priori fluxes and CO2 concentrations, that is, the variances and the correlation lengths, using real, continuous hourly CO2 concentration data in the context of the Ring 2 experiment of the North American Carbon Program Mid Continent Intensive. Several criteria, namely maximum likelihood (ML), general cross-validation (GCV) and χ 2 test are compared for the first time under a realistic setting in a mesoscale CO2 inversion. It is shown that the optimal hyperparameters under the ML criterion assure perfect χ 2 consistency of the inverted fluxes. Inversions using the ML error variances estimates rather than the prescribed default values are less weighted by the observations, because the default values underestimate the model-data mismatch error, which is assumed to be dominated by the atmospheric transport error. As for the spatial correlation length in prior flux errors, the Ring 2 network is sparse for GCV, and this method fails to reach an optimum. In contrast, the ML estimate (e.g. an optimum of 20 km for the first week of June 2007) does not support long spatial correlations that are usually assumed in the default values.www.tellusb.net/index.php/tellusb/article/download/20894/pdf_1hyperparameter estimationuncertainty quantificationmesoscale carbon dioxide inversions
collection DOAJ
language English
format Article
sources DOAJ
author Lin Wu
Marc Bocquet
Frédéric Chevallier
Thomas Lauvaux
Kenneth Davis
spellingShingle Lin Wu
Marc Bocquet
Frédéric Chevallier
Thomas Lauvaux
Kenneth Davis
Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions
Tellus: Series B, Chemical and Physical Meteorology
hyperparameter estimation
uncertainty quantification
mesoscale carbon dioxide inversions
author_facet Lin Wu
Marc Bocquet
Frédéric Chevallier
Thomas Lauvaux
Kenneth Davis
author_sort Lin Wu
title Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions
title_short Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions
title_full Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions
title_fullStr Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions
title_full_unstemmed Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions
title_sort hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions
publisher Taylor & Francis Group
series Tellus: Series B, Chemical and Physical Meteorology
issn 1600-0889
publishDate 2013-11-01
description Uncertainty quantification is critical in the inversion of CO2 surface fluxes from atmospheric concentration measurements. Here, we estimate the main hyperparameters of the error covariance matrices for a priori fluxes and CO2 concentrations, that is, the variances and the correlation lengths, using real, continuous hourly CO2 concentration data in the context of the Ring 2 experiment of the North American Carbon Program Mid Continent Intensive. Several criteria, namely maximum likelihood (ML), general cross-validation (GCV) and χ 2 test are compared for the first time under a realistic setting in a mesoscale CO2 inversion. It is shown that the optimal hyperparameters under the ML criterion assure perfect χ 2 consistency of the inverted fluxes. Inversions using the ML error variances estimates rather than the prescribed default values are less weighted by the observations, because the default values underestimate the model-data mismatch error, which is assumed to be dominated by the atmospheric transport error. As for the spatial correlation length in prior flux errors, the Ring 2 network is sparse for GCV, and this method fails to reach an optimum. In contrast, the ML estimate (e.g. an optimum of 20 km for the first week of June 2007) does not support long spatial correlations that are usually assumed in the default values.
topic hyperparameter estimation
uncertainty quantification
mesoscale carbon dioxide inversions
url http://www.tellusb.net/index.php/tellusb/article/download/20894/pdf_1
work_keys_str_mv AT linwu hyperparameterestimationforuncertaintyquantificationinmesoscalecarbondioxideinversions
AT marcbocquet hyperparameterestimationforuncertaintyquantificationinmesoscalecarbondioxideinversions
AT frx00e9dx00e9ricchevallier hyperparameterestimationforuncertaintyquantificationinmesoscalecarbondioxideinversions
AT thomaslauvaux hyperparameterestimationforuncertaintyquantificationinmesoscalecarbondioxideinversions
AT kennethdavis hyperparameterestimationforuncertaintyquantificationinmesoscalecarbondioxideinversions
_version_ 1725178850876325888