Asymptotic Stability of the Solutions of Neutral Linear Fractional System with Nonlinear Perturbation

In this article existence and uniqueness of the solutions of the initial problem for neutral nonlinear differential system with incommensurate order fractional derivatives in Caputo sense and with piecewise continuous initial function is proved. A formula for integral presentation of the general sol...

Full description

Bibliographic Details
Main Authors: Andrey Zahariev, Hristo Kiskinov
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/3/390
Description
Summary:In this article existence and uniqueness of the solutions of the initial problem for neutral nonlinear differential system with incommensurate order fractional derivatives in Caputo sense and with piecewise continuous initial function is proved. A formula for integral presentation of the general solution of a linear autonomous neutral system with several delays is established and used for the study of the stability properties of a neutral autonomous nonlinear perturbed linear fractional differential system. Natural sufficient conditions are found to ensure that from global asymptotic stability of the zero solution of the linear part of a nonlinearly perturbed system it follows global asymptotic stability of the zero solution of the whole nonlinearly perturbed system.
ISSN:2227-7390