A Combined Experimental and Theoretical Study on the Immunoassay of Human Immunoglobulin Using a Quartz Crystal Microbalance
We investigate a immunoassay biosensor that employs a Quartz Crystal Microbalance (QCM) to detect the specific binding reaction of the (Human IgG1)-(Anti-Human IgG1) protein pair under physiological conditions. In addition to experiments, a three dimensional time domain finite element method (FEM) w...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2010-12-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/10/12/11498/ |
id |
doaj-53f3aa2dcbe941a58df28a2312692440 |
---|---|
record_format |
Article |
spelling |
doaj-53f3aa2dcbe941a58df28a23126924402020-11-25T01:04:43ZengMDPI AGSensors1424-82202010-12-011012114981151110.3390/s101211498A Combined Experimental and Theoretical Study on the Immunoassay of Human Immunoglobulin Using a Quartz Crystal MicrobalanceJeng-Shian ChangSheng D. ChaoHung-Chi ChangKuan-Rong HuangKuang-Chong WuTzong-Shyan WungPo-Jen LiaoWe investigate a immunoassay biosensor that employs a Quartz Crystal Microbalance (QCM) to detect the specific binding reaction of the (Human IgG1)-(Anti-Human IgG1) protein pair under physiological conditions. In addition to experiments, a three dimensional time domain finite element method (FEM) was used to perform simulations for the biomolecular binding reaction in microfluidic channels. In particular, we discuss the unsteady convective diffusion in the transportation tube, which conveys the buffer solution containing the analyte molecules into the micro-channel where the QCM sensor lies. It is found that the distribution of the analyte concentration in the tube is strongly affected by the flow field, yielding large discrepancies between the simulations and experimental results. Our analysis shows that the conventional assumption of the analyte concentration in the inlet of the micro-channel being uniform and constant in time is inadequate. In addition, we also show that the commonly used procedure in kinetic analysis for estimating binding rate constants from the experimental data would underestimate these rate constants due to neglected diffusion processes from the inlet to the reaction surface. A calibration procedure is proposed to supplement the basic kinetic analysis, thus yielding better consistency with experiments. http://www.mdpi.com/1424-8220/10/12/11498/biosensorQuartz Crystal MicrobalanceFinite Element Method (FEM)basic kinetic analysishuman IgG1 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jeng-Shian Chang Sheng D. Chao Hung-Chi Chang Kuan-Rong Huang Kuang-Chong Wu Tzong-Shyan Wung Po-Jen Liao |
spellingShingle |
Jeng-Shian Chang Sheng D. Chao Hung-Chi Chang Kuan-Rong Huang Kuang-Chong Wu Tzong-Shyan Wung Po-Jen Liao A Combined Experimental and Theoretical Study on the Immunoassay of Human Immunoglobulin Using a Quartz Crystal Microbalance Sensors biosensor Quartz Crystal Microbalance Finite Element Method (FEM) basic kinetic analysis human IgG1 |
author_facet |
Jeng-Shian Chang Sheng D. Chao Hung-Chi Chang Kuan-Rong Huang Kuang-Chong Wu Tzong-Shyan Wung Po-Jen Liao |
author_sort |
Jeng-Shian Chang |
title |
A Combined Experimental and Theoretical Study on the Immunoassay of Human Immunoglobulin Using a Quartz Crystal Microbalance |
title_short |
A Combined Experimental and Theoretical Study on the Immunoassay of Human Immunoglobulin Using a Quartz Crystal Microbalance |
title_full |
A Combined Experimental and Theoretical Study on the Immunoassay of Human Immunoglobulin Using a Quartz Crystal Microbalance |
title_fullStr |
A Combined Experimental and Theoretical Study on the Immunoassay of Human Immunoglobulin Using a Quartz Crystal Microbalance |
title_full_unstemmed |
A Combined Experimental and Theoretical Study on the Immunoassay of Human Immunoglobulin Using a Quartz Crystal Microbalance |
title_sort |
combined experimental and theoretical study on the immunoassay of human immunoglobulin using a quartz crystal microbalance |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2010-12-01 |
description |
We investigate a immunoassay biosensor that employs a Quartz Crystal Microbalance (QCM) to detect the specific binding reaction of the (Human IgG1)-(Anti-Human IgG1) protein pair under physiological conditions. In addition to experiments, a three dimensional time domain finite element method (FEM) was used to perform simulations for the biomolecular binding reaction in microfluidic channels. In particular, we discuss the unsteady convective diffusion in the transportation tube, which conveys the buffer solution containing the analyte molecules into the micro-channel where the QCM sensor lies. It is found that the distribution of the analyte concentration in the tube is strongly affected by the flow field, yielding large discrepancies between the simulations and experimental results. Our analysis shows that the conventional assumption of the analyte concentration in the inlet of the micro-channel being uniform and constant in time is inadequate. In addition, we also show that the commonly used procedure in kinetic analysis for estimating binding rate constants from the experimental data would underestimate these rate constants due to neglected diffusion processes from the inlet to the reaction surface. A calibration procedure is proposed to supplement the basic kinetic analysis, thus yielding better consistency with experiments. |
topic |
biosensor Quartz Crystal Microbalance Finite Element Method (FEM) basic kinetic analysis human IgG1 |
url |
http://www.mdpi.com/1424-8220/10/12/11498/ |
work_keys_str_mv |
AT jengshianchang acombinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT shengdchao acombinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT hungchichang acombinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT kuanronghuang acombinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT kuangchongwu acombinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT tzongshyanwung acombinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT pojenliao acombinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT jengshianchang combinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT shengdchao combinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT hungchichang combinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT kuanronghuang combinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT kuangchongwu combinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT tzongshyanwung combinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance AT pojenliao combinedexperimentalandtheoreticalstudyontheimmunoassayofhumanimmunoglobulinusingaquartzcrystalmicrobalance |
_version_ |
1725196453004967936 |