Chronically Implanted Intracranial Electrodes: Tissue Reaction and Electrical Changes

The brain-electrode interface is arguably one of the most important areas of study in neuroscience today. A stronger foundation in this topic will allow us to probe the architecture of the brain in unprecedented functional detail and augment our ability to intervene in disease states. Over many year...

Full description

Bibliographic Details
Main Authors: Andrew Campbell, Chengyuan Wu
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Micromachines
Subjects:
Online Access:http://www.mdpi.com/2072-666X/9/9/430
Description
Summary:The brain-electrode interface is arguably one of the most important areas of study in neuroscience today. A stronger foundation in this topic will allow us to probe the architecture of the brain in unprecedented functional detail and augment our ability to intervene in disease states. Over many years, significant progress has been made in this field, but some obstacles have remained elusive—notably preventing glial encapsulation and electrode degradation. In this review, we discuss the tissue response to electrode implantation on acute and chronic timescales, the electrical changes that occur in electrode systems over time, and strategies that are being investigated in order to minimize the tissue response to implantation and maximize functional electrode longevity. We also highlight the current and future clinical applications and relevance of electrode technology.
ISSN:2072-666X