Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function

<p/> <p>An exact multiplicity result of positive solutions for the boundary value problems <inline-formula> <graphic file="1687-2770-2010-207649-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i2.gif"/>&l...

Full description

Bibliographic Details
Main Authors: Luo Hua, An Yulian
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Boundary Value Problems
Online Access:http://www.boundaryvalueproblems.com/content/2010/207649
id doaj-53c04e1f3fc446a9ad3f0a05b4bdb99d
record_format Article
spelling doaj-53c04e1f3fc446a9ad3f0a05b4bdb99d2020-11-25T01:58:31ZengSpringerOpenBoundary Value Problems1687-27621687-27702010-01-0120101207649Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight FunctionLuo HuaAn Yulian<p/> <p>An exact multiplicity result of positive solutions for the boundary value problems <inline-formula> <graphic file="1687-2770-2010-207649-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i2.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i3.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i4.gif"/></inline-formula> is achieved, where <inline-formula> <graphic file="1687-2770-2010-207649-i5.gif"/></inline-formula> is a positive parameter. Here the function <inline-formula> <graphic file="1687-2770-2010-207649-i6.gif"/></inline-formula> is <inline-formula> <graphic file="1687-2770-2010-207649-i7.gif"/></inline-formula> and satisfies <inline-formula> <graphic file="1687-2770-2010-207649-i8.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i9.gif"/></inline-formula> for <inline-formula> <graphic file="1687-2770-2010-207649-i10.gif"/></inline-formula> for some <inline-formula> <graphic file="1687-2770-2010-207649-i11.gif"/></inline-formula>. Moreover, <inline-formula> <graphic file="1687-2770-2010-207649-i12.gif"/></inline-formula> is asymptotically linear and <inline-formula> <graphic file="1687-2770-2010-207649-i13.gif"/></inline-formula> can change sign only once. The weight function <inline-formula> <graphic file="1687-2770-2010-207649-i14.gif"/></inline-formula> is <inline-formula> <graphic file="1687-2770-2010-207649-i15.gif"/></inline-formula> and satisfies <inline-formula> <graphic file="1687-2770-2010-207649-i16.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i17.gif"/></inline-formula> for <inline-formula> <graphic file="1687-2770-2010-207649-i18.gif"/></inline-formula>. Using bifurcation techniques, we obtain the exact number of positive solutions of the problem under consideration for <inline-formula> <graphic file="1687-2770-2010-207649-i19.gif"/></inline-formula> lying in various intervals in <inline-formula> <graphic file="1687-2770-2010-207649-i20.gif"/></inline-formula>. Moreover, we indicate how to extend the result to the general case.</p>http://www.boundaryvalueproblems.com/content/2010/207649
collection DOAJ
language English
format Article
sources DOAJ
author Luo Hua
An Yulian
spellingShingle Luo Hua
An Yulian
Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function
Boundary Value Problems
author_facet Luo Hua
An Yulian
author_sort Luo Hua
title Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function
title_short Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function
title_full Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function
title_fullStr Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function
title_full_unstemmed Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function
title_sort exact multiplicity of positive solutions for a class of second-order two-point boundary problems with weight function
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2762
1687-2770
publishDate 2010-01-01
description <p/> <p>An exact multiplicity result of positive solutions for the boundary value problems <inline-formula> <graphic file="1687-2770-2010-207649-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i2.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i3.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i4.gif"/></inline-formula> is achieved, where <inline-formula> <graphic file="1687-2770-2010-207649-i5.gif"/></inline-formula> is a positive parameter. Here the function <inline-formula> <graphic file="1687-2770-2010-207649-i6.gif"/></inline-formula> is <inline-formula> <graphic file="1687-2770-2010-207649-i7.gif"/></inline-formula> and satisfies <inline-formula> <graphic file="1687-2770-2010-207649-i8.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i9.gif"/></inline-formula> for <inline-formula> <graphic file="1687-2770-2010-207649-i10.gif"/></inline-formula> for some <inline-formula> <graphic file="1687-2770-2010-207649-i11.gif"/></inline-formula>. Moreover, <inline-formula> <graphic file="1687-2770-2010-207649-i12.gif"/></inline-formula> is asymptotically linear and <inline-formula> <graphic file="1687-2770-2010-207649-i13.gif"/></inline-formula> can change sign only once. The weight function <inline-formula> <graphic file="1687-2770-2010-207649-i14.gif"/></inline-formula> is <inline-formula> <graphic file="1687-2770-2010-207649-i15.gif"/></inline-formula> and satisfies <inline-formula> <graphic file="1687-2770-2010-207649-i16.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i17.gif"/></inline-formula> for <inline-formula> <graphic file="1687-2770-2010-207649-i18.gif"/></inline-formula>. Using bifurcation techniques, we obtain the exact number of positive solutions of the problem under consideration for <inline-formula> <graphic file="1687-2770-2010-207649-i19.gif"/></inline-formula> lying in various intervals in <inline-formula> <graphic file="1687-2770-2010-207649-i20.gif"/></inline-formula>. Moreover, we indicate how to extend the result to the general case.</p>
url http://www.boundaryvalueproblems.com/content/2010/207649
work_keys_str_mv AT luohua exactmultiplicityofpositivesolutionsforaclassofsecondordertwopointboundaryproblemswithweightfunction
AT anyulian exactmultiplicityofpositivesolutionsforaclassofsecondordertwopointboundaryproblemswithweightfunction
_version_ 1724969191042187264