Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function
<p/> <p>An exact multiplicity result of positive solutions for the boundary value problems <inline-formula> <graphic file="1687-2770-2010-207649-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i2.gif"/>&l...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Boundary Value Problems |
Online Access: | http://www.boundaryvalueproblems.com/content/2010/207649 |
id |
doaj-53c04e1f3fc446a9ad3f0a05b4bdb99d |
---|---|
record_format |
Article |
spelling |
doaj-53c04e1f3fc446a9ad3f0a05b4bdb99d2020-11-25T01:58:31ZengSpringerOpenBoundary Value Problems1687-27621687-27702010-01-0120101207649Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight FunctionLuo HuaAn Yulian<p/> <p>An exact multiplicity result of positive solutions for the boundary value problems <inline-formula> <graphic file="1687-2770-2010-207649-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i2.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i3.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i4.gif"/></inline-formula> is achieved, where <inline-formula> <graphic file="1687-2770-2010-207649-i5.gif"/></inline-formula> is a positive parameter. Here the function <inline-formula> <graphic file="1687-2770-2010-207649-i6.gif"/></inline-formula> is <inline-formula> <graphic file="1687-2770-2010-207649-i7.gif"/></inline-formula> and satisfies <inline-formula> <graphic file="1687-2770-2010-207649-i8.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i9.gif"/></inline-formula> for <inline-formula> <graphic file="1687-2770-2010-207649-i10.gif"/></inline-formula> for some <inline-formula> <graphic file="1687-2770-2010-207649-i11.gif"/></inline-formula>. Moreover, <inline-formula> <graphic file="1687-2770-2010-207649-i12.gif"/></inline-formula> is asymptotically linear and <inline-formula> <graphic file="1687-2770-2010-207649-i13.gif"/></inline-formula> can change sign only once. The weight function <inline-formula> <graphic file="1687-2770-2010-207649-i14.gif"/></inline-formula> is <inline-formula> <graphic file="1687-2770-2010-207649-i15.gif"/></inline-formula> and satisfies <inline-formula> <graphic file="1687-2770-2010-207649-i16.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i17.gif"/></inline-formula> for <inline-formula> <graphic file="1687-2770-2010-207649-i18.gif"/></inline-formula>. Using bifurcation techniques, we obtain the exact number of positive solutions of the problem under consideration for <inline-formula> <graphic file="1687-2770-2010-207649-i19.gif"/></inline-formula> lying in various intervals in <inline-formula> <graphic file="1687-2770-2010-207649-i20.gif"/></inline-formula>. Moreover, we indicate how to extend the result to the general case.</p>http://www.boundaryvalueproblems.com/content/2010/207649 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Luo Hua An Yulian |
spellingShingle |
Luo Hua An Yulian Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function Boundary Value Problems |
author_facet |
Luo Hua An Yulian |
author_sort |
Luo Hua |
title |
Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function |
title_short |
Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function |
title_full |
Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function |
title_fullStr |
Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function |
title_full_unstemmed |
Exact Multiplicity of Positive Solutions for a Class of Second-Order Two-Point Boundary Problems with Weight Function |
title_sort |
exact multiplicity of positive solutions for a class of second-order two-point boundary problems with weight function |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2762 1687-2770 |
publishDate |
2010-01-01 |
description |
<p/> <p>An exact multiplicity result of positive solutions for the boundary value problems <inline-formula> <graphic file="1687-2770-2010-207649-i1.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i2.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i3.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i4.gif"/></inline-formula> is achieved, where <inline-formula> <graphic file="1687-2770-2010-207649-i5.gif"/></inline-formula> is a positive parameter. Here the function <inline-formula> <graphic file="1687-2770-2010-207649-i6.gif"/></inline-formula> is <inline-formula> <graphic file="1687-2770-2010-207649-i7.gif"/></inline-formula> and satisfies <inline-formula> <graphic file="1687-2770-2010-207649-i8.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i9.gif"/></inline-formula> for <inline-formula> <graphic file="1687-2770-2010-207649-i10.gif"/></inline-formula> for some <inline-formula> <graphic file="1687-2770-2010-207649-i11.gif"/></inline-formula>. Moreover, <inline-formula> <graphic file="1687-2770-2010-207649-i12.gif"/></inline-formula> is asymptotically linear and <inline-formula> <graphic file="1687-2770-2010-207649-i13.gif"/></inline-formula> can change sign only once. The weight function <inline-formula> <graphic file="1687-2770-2010-207649-i14.gif"/></inline-formula> is <inline-formula> <graphic file="1687-2770-2010-207649-i15.gif"/></inline-formula> and satisfies <inline-formula> <graphic file="1687-2770-2010-207649-i16.gif"/></inline-formula>, <inline-formula> <graphic file="1687-2770-2010-207649-i17.gif"/></inline-formula> for <inline-formula> <graphic file="1687-2770-2010-207649-i18.gif"/></inline-formula>. Using bifurcation techniques, we obtain the exact number of positive solutions of the problem under consideration for <inline-formula> <graphic file="1687-2770-2010-207649-i19.gif"/></inline-formula> lying in various intervals in <inline-formula> <graphic file="1687-2770-2010-207649-i20.gif"/></inline-formula>. Moreover, we indicate how to extend the result to the general case.</p> |
url |
http://www.boundaryvalueproblems.com/content/2010/207649 |
work_keys_str_mv |
AT luohua exactmultiplicityofpositivesolutionsforaclassofsecondordertwopointboundaryproblemswithweightfunction AT anyulian exactmultiplicityofpositivesolutionsforaclassofsecondordertwopointboundaryproblemswithweightfunction |
_version_ |
1724969191042187264 |