Ultrasonic vibrations and coal permeability: Laboratory experimental investigations and numerical simulations

Ultrasonic vibrations in coal lead to cavitation bubble oscillation, growth, shrinkage, and collapse, and the strong vibration of cavitation bubbles not only makes coal pores break and cracks propagate, but plays an important role in enhancing the permeability of coal. In this paper, the influence o...

Full description

Bibliographic Details
Main Authors: Junwen Zhang, Yulin Li
Format: Article
Language:English
Published: Elsevier 2017-03-01
Series:International Journal of Mining Science and Technology
Online Access:http://www.sciencedirect.com/science/article/pii/S2095268617300472
Description
Summary:Ultrasonic vibrations in coal lead to cavitation bubble oscillation, growth, shrinkage, and collapse, and the strong vibration of cavitation bubbles not only makes coal pores break and cracks propagate, but plays an important role in enhancing the permeability of coal. In this paper, the influence of ultrasonic cavitation on coal and the effects of the sonic waves on crack generation, propagation, connection, as well as the effect of cracks on the coal permeability, are studied. The experimental results show that cracks in coal are generated even connected rapidly after ultrasonic cavitation. Under the effect of ultrasonic cavitation, the permeability increases between 30% and 60%, and the number of cracks in coal also significantly increased. Numerical experiments show that the effective sound pressure is beneficial to fracture propagation and connection, and it is closely related to the permeability. Moreover, the numerical simulations and physical experiments provide a guide for the coal permeability improvement. Keywords: Ultrasonic cavitation, Rock-coal, Coal fracture, Permeability, Experimental analysis
ISSN:2095-2686