Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing

Piotr Orlowski,1 Magdalena Zmigrodzka,2 Emilia Tomaszewska,3 Katarzyna Ranoszek-Soliwoda,3 Beata Pajak,4 Anna Slonska,5 Joanna Cymerys,5 Grzegorz Celichowski,3 Jaroslaw Grobelny,3 Malgorzata Krzyzowska1 1Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Wars...

Full description

Bibliographic Details
Main Authors: Orlowski P, Zmigrodzka M, Tomaszewska E, Ranoszek-Soliwoda K, Pajak B, Slonska A, Cymerys J, Celichowski G, Grobelny J, Krzyzowska M
Format: Article
Language:English
Published: Dove Medical Press 2020-07-01
Series:International Journal of Nanomedicine
Subjects:
Online Access:https://www.dovepress.com/polyphenol-conjugated-bimetallic-auagnps-for-improved-wound-healing-peer-reviewed-article-IJN
id doaj-538875e22571427c9c92927f5c63789e
record_format Article
spelling doaj-538875e22571427c9c92927f5c63789e2020-11-25T03:55:43ZengDove Medical PressInternational Journal of Nanomedicine1178-20132020-07-01Volume 154969499055277Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound HealingOrlowski PZmigrodzka MTomaszewska ERanoszek-Soliwoda KPajak BSlonska ACymerys JCelichowski GGrobelny JKrzyzowska MPiotr Orlowski,1 Magdalena Zmigrodzka,2 Emilia Tomaszewska,3 Katarzyna Ranoszek-Soliwoda,3 Beata Pajak,4 Anna Slonska,5 Joanna Cymerys,5 Grzegorz Celichowski,3 Jaroslaw Grobelny,3 Malgorzata Krzyzowska1 1Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Warsaw, Poland; 2Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland; 3Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland; 4Laboratory of Genetics and Molecular Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland; 5Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw 02-786, PolandCorrespondence: Malgorzata Krzyzowska Email krzyzowskam@yahoo.comBackground: Polyphenols possess antioxidant, anti-inflammatory and antimicrobial properties and have been used in the treatment of skin wounds and burns. We previously showed that tannic acid-modified AgNPs sized > 26 nm promote wound healing, while tannic acid-modified AgNPs sized 13 nm can elicit strong local inflammatory response. In this study, we tested bimetallic Au@AgNPs sized 30 nm modified with selected flavonoid and non-flavonoid compounds for wound healing applications.Methods: Bimetallic Au@AgNPs were obtained by growing an Ag layer on AuNPs and further modified with selected polyphenols. After toxicity tests and in vitro scratch assay in HaCaT cells, modified lymph node assay as well as the mouse splint wound model were further used to access the wound healing potential of selected non-toxic modifications.Results: Tannic acid, gallic acid, polydatin, resveratrol, catechin, epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate and procyanidin B2 used to modify Au@AgNPs exhibited good toxicological profiles in HaCaT cells. Au@AgNPs modified with 15 μM tannic acid, 200 μM resveratrol, 200 μM epicatechin gallate, 1000 μM gallic acid and 200 μM procyanidin B2 induced wound healing in vivo and did not lead to the local irritation or inflammation. Tannic acid-modified Au@AgNPs induced epithelial-to-mesenchymal transition (EMT) – like re-epithelialization, while other polyphenol modifications of Au@AgNPs acted through proliferation and wound closure.Conclusion: Bimetallic Au@AgNPs can be used as a basis for modification with selected polyphenols for topical uses. In addition, we have demonstrated that particular polyphenols used to modify bimetallic nanoparticles may show different effects upon different stages of wound healing.Keywords: polyphenols, bimetallic nanoparticles, wound healing, mouse modelhttps://www.dovepress.com/polyphenol-conjugated-bimetallic-auagnps-for-improved-wound-healing-peer-reviewed-article-IJNpolyphenolsbimetallic nanoparticleswound healingmouse model
collection DOAJ
language English
format Article
sources DOAJ
author Orlowski P
Zmigrodzka M
Tomaszewska E
Ranoszek-Soliwoda K
Pajak B
Slonska A
Cymerys J
Celichowski G
Grobelny J
Krzyzowska M
spellingShingle Orlowski P
Zmigrodzka M
Tomaszewska E
Ranoszek-Soliwoda K
Pajak B
Slonska A
Cymerys J
Celichowski G
Grobelny J
Krzyzowska M
Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing
International Journal of Nanomedicine
polyphenols
bimetallic nanoparticles
wound healing
mouse model
author_facet Orlowski P
Zmigrodzka M
Tomaszewska E
Ranoszek-Soliwoda K
Pajak B
Slonska A
Cymerys J
Celichowski G
Grobelny J
Krzyzowska M
author_sort Orlowski P
title Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing
title_short Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing
title_full Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing
title_fullStr Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing
title_full_unstemmed Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing
title_sort polyphenol-conjugated bimetallic au@agnps for improved wound healing
publisher Dove Medical Press
series International Journal of Nanomedicine
issn 1178-2013
publishDate 2020-07-01
description Piotr Orlowski,1 Magdalena Zmigrodzka,2 Emilia Tomaszewska,3 Katarzyna Ranoszek-Soliwoda,3 Beata Pajak,4 Anna Slonska,5 Joanna Cymerys,5 Grzegorz Celichowski,3 Jaroslaw Grobelny,3 Malgorzata Krzyzowska1 1Laboratory of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Warsaw, Poland; 2Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland; 3Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland; 4Laboratory of Genetics and Molecular Biology, Military Institute of Hygiene and Epidemiology, Warsaw, Poland; 5Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw 02-786, PolandCorrespondence: Malgorzata Krzyzowska Email krzyzowskam@yahoo.comBackground: Polyphenols possess antioxidant, anti-inflammatory and antimicrobial properties and have been used in the treatment of skin wounds and burns. We previously showed that tannic acid-modified AgNPs sized > 26 nm promote wound healing, while tannic acid-modified AgNPs sized 13 nm can elicit strong local inflammatory response. In this study, we tested bimetallic Au@AgNPs sized 30 nm modified with selected flavonoid and non-flavonoid compounds for wound healing applications.Methods: Bimetallic Au@AgNPs were obtained by growing an Ag layer on AuNPs and further modified with selected polyphenols. After toxicity tests and in vitro scratch assay in HaCaT cells, modified lymph node assay as well as the mouse splint wound model were further used to access the wound healing potential of selected non-toxic modifications.Results: Tannic acid, gallic acid, polydatin, resveratrol, catechin, epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate and procyanidin B2 used to modify Au@AgNPs exhibited good toxicological profiles in HaCaT cells. Au@AgNPs modified with 15 μM tannic acid, 200 μM resveratrol, 200 μM epicatechin gallate, 1000 μM gallic acid and 200 μM procyanidin B2 induced wound healing in vivo and did not lead to the local irritation or inflammation. Tannic acid-modified Au@AgNPs induced epithelial-to-mesenchymal transition (EMT) – like re-epithelialization, while other polyphenol modifications of Au@AgNPs acted through proliferation and wound closure.Conclusion: Bimetallic Au@AgNPs can be used as a basis for modification with selected polyphenols for topical uses. In addition, we have demonstrated that particular polyphenols used to modify bimetallic nanoparticles may show different effects upon different stages of wound healing.Keywords: polyphenols, bimetallic nanoparticles, wound healing, mouse model
topic polyphenols
bimetallic nanoparticles
wound healing
mouse model
url https://www.dovepress.com/polyphenol-conjugated-bimetallic-auagnps-for-improved-wound-healing-peer-reviewed-article-IJN
work_keys_str_mv AT orlowskip polyphenolconjugatedbimetallicauagnpsforimprovedwoundhealing
AT zmigrodzkam polyphenolconjugatedbimetallicauagnpsforimprovedwoundhealing
AT tomaszewskae polyphenolconjugatedbimetallicauagnpsforimprovedwoundhealing
AT ranoszeksoliwodak polyphenolconjugatedbimetallicauagnpsforimprovedwoundhealing
AT pajakb polyphenolconjugatedbimetallicauagnpsforimprovedwoundhealing
AT slonskaa polyphenolconjugatedbimetallicauagnpsforimprovedwoundhealing
AT cymerysj polyphenolconjugatedbimetallicauagnpsforimprovedwoundhealing
AT celichowskig polyphenolconjugatedbimetallicauagnpsforimprovedwoundhealing
AT grobelnyj polyphenolconjugatedbimetallicauagnpsforimprovedwoundhealing
AT krzyzowskam polyphenolconjugatedbimetallicauagnpsforimprovedwoundhealing
_version_ 1724468529779965952