Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation.

Leptin plays a critical role in the central regulation of bone mass. Ghrelin counteracts leptin. In this study, we investigated the effect of chronic intracerebroventricular administration of ghrelin on bone mass in Sprague-Dawley rats (1.5 μg/day for 21 days). Rats were divided into control, ghreli...

Full description

Bibliographic Details
Main Authors: Hyung Jin Choi, Kyoung Ho Ki, Jae-Yeon Yang, Bo Young Jang, Jung Ah Song, Wook-Young Baek, Jung Hee Kim, Jee Hyun An, Sang Wan Kim, Seong Yeon Kim, Jung-Eun Kim, Chan Soo Shin
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3699588?pdf=render
Description
Summary:Leptin plays a critical role in the central regulation of bone mass. Ghrelin counteracts leptin. In this study, we investigated the effect of chronic intracerebroventricular administration of ghrelin on bone mass in Sprague-Dawley rats (1.5 μg/day for 21 days). Rats were divided into control, ghrelin ad libitum-fed (ghrelin ad lib-fed), and ghrelin pair-fed groups. Ghrelin intracerebroventricular infusion significantly increased body weight in ghrelin ad lib-fed rats but not in ghrelin pair-fed rats, as compared with control rats. Chronic intracerebroventricular ghrelin infusion significantly increased bone mass in the ghrelin pair-fed group compared with control as indicated by increased bone volume percentage, trabecular thickness, trabecular number and volumetric bone mineral density in tibia trabecular bone. There was no significant difference in trabecular bone mass between the control group and the ghrelin ad-lib fed group. Chronic intracerebroventricular ghrelin infusion significantly increased the mineral apposition rate in the ghrelin pair-fed group as compared with control. In conclusion, chronic central administration of ghrelin increases bone mass through a mechanism that is independent of body weight, suggesting that ghrelin may have a bone anabolic effect through the central nervous system.
ISSN:1932-6203