Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula>

<p/> <p>We derive eight basic identities of symmetry in three variables related to Euler polynomials and alternating power sums. These and most of their corollaries are new, since there have been results only about identities of symmetry in two variables. These abundances of symmetries s...

Full description

Bibliographic Details
Main Authors: Kim DaeSan, Park KyoungHo
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2010/851521
id doaj-537ea5d7524240c58e59285408403a95
record_format Article
spelling doaj-537ea5d7524240c58e59285408403a952020-11-25T00:03:44ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-0120101851521Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula>Kim DaeSanPark KyoungHo<p/> <p>We derive eight basic identities of symmetry in three variables related to Euler polynomials and alternating power sums. These and most of their corollaries are new, since there have been results only about identities of symmetry in two variables. These abundances of symmetries shed new light even on the existing identities so as to yield some further interesting ones. The derivations of identities are based on the <inline-formula> <graphic file="1029-242X-2010-851521-i2.gif"/></inline-formula>-adic integral expression of the generating function for the Euler polynomials and the quotient of integrals that can be expressed as the exponential generating function for the alternating power sums.</p>http://www.journalofinequalitiesandapplications.com/content/2010/851521
collection DOAJ
language English
format Article
sources DOAJ
author Kim DaeSan
Park KyoungHo
spellingShingle Kim DaeSan
Park KyoungHo
Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula>
Journal of Inequalities and Applications
author_facet Kim DaeSan
Park KyoungHo
author_sort Kim DaeSan
title Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula>
title_short Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula>
title_full Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula>
title_fullStr Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula>
title_full_unstemmed Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula>
title_sort identities of symmetry for euler polynomials arising from quotients of fermionic integrals invariant under <inline-formula> <graphic file="1029-242x-2010-851521-i1.gif"/></inline-formula>
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2010-01-01
description <p/> <p>We derive eight basic identities of symmetry in three variables related to Euler polynomials and alternating power sums. These and most of their corollaries are new, since there have been results only about identities of symmetry in two variables. These abundances of symmetries shed new light even on the existing identities so as to yield some further interesting ones. The derivations of identities are based on the <inline-formula> <graphic file="1029-242X-2010-851521-i2.gif"/></inline-formula>-adic integral expression of the generating function for the Euler polynomials and the quotient of integrals that can be expressed as the exponential generating function for the alternating power sums.</p>
url http://www.journalofinequalitiesandapplications.com/content/2010/851521
work_keys_str_mv AT kimdaesan identitiesofsymmetryforeulerpolynomialsarisingfromquotientsoffermionicintegralsinvariantunderinlineformulagraphicfile1029242x2010851521i1gifinlineformula
AT parkkyoungho identitiesofsymmetryforeulerpolynomialsarisingfromquotientsoffermionicintegralsinvariantunderinlineformulagraphicfile1029242x2010851521i1gifinlineformula
_version_ 1725432323931897856