Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula>
<p/> <p>We derive eight basic identities of symmetry in three variables related to Euler polynomials and alternating power sums. These and most of their corollaries are new, since there have been results only about identities of symmetry in two variables. These abundances of symmetries s...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2010/851521 |
id |
doaj-537ea5d7524240c58e59285408403a95 |
---|---|
record_format |
Article |
spelling |
doaj-537ea5d7524240c58e59285408403a952020-11-25T00:03:44ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-0120101851521Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula>Kim DaeSanPark KyoungHo<p/> <p>We derive eight basic identities of symmetry in three variables related to Euler polynomials and alternating power sums. These and most of their corollaries are new, since there have been results only about identities of symmetry in two variables. These abundances of symmetries shed new light even on the existing identities so as to yield some further interesting ones. The derivations of identities are based on the <inline-formula> <graphic file="1029-242X-2010-851521-i2.gif"/></inline-formula>-adic integral expression of the generating function for the Euler polynomials and the quotient of integrals that can be expressed as the exponential generating function for the alternating power sums.</p>http://www.journalofinequalitiesandapplications.com/content/2010/851521 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kim DaeSan Park KyoungHo |
spellingShingle |
Kim DaeSan Park KyoungHo Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula> Journal of Inequalities and Applications |
author_facet |
Kim DaeSan Park KyoungHo |
author_sort |
Kim DaeSan |
title |
Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula> |
title_short |
Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula> |
title_full |
Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula> |
title_fullStr |
Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula> |
title_full_unstemmed |
Identities of Symmetry for Euler Polynomials Arising from Quotients of Fermionic Integrals Invariant under <inline-formula> <graphic file="1029-242X-2010-851521-i1.gif"/></inline-formula> |
title_sort |
identities of symmetry for euler polynomials arising from quotients of fermionic integrals invariant under <inline-formula> <graphic file="1029-242x-2010-851521-i1.gif"/></inline-formula> |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2010-01-01 |
description |
<p/> <p>We derive eight basic identities of symmetry in three variables related to Euler polynomials and alternating power sums. These and most of their corollaries are new, since there have been results only about identities of symmetry in two variables. These abundances of symmetries shed new light even on the existing identities so as to yield some further interesting ones. The derivations of identities are based on the <inline-formula> <graphic file="1029-242X-2010-851521-i2.gif"/></inline-formula>-adic integral expression of the generating function for the Euler polynomials and the quotient of integrals that can be expressed as the exponential generating function for the alternating power sums.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2010/851521 |
work_keys_str_mv |
AT kimdaesan identitiesofsymmetryforeulerpolynomialsarisingfromquotientsoffermionicintegralsinvariantunderinlineformulagraphicfile1029242x2010851521i1gifinlineformula AT parkkyoungho identitiesofsymmetryforeulerpolynomialsarisingfromquotientsoffermionicintegralsinvariantunderinlineformulagraphicfile1029242x2010851521i1gifinlineformula |
_version_ |
1725432323931897856 |