Inequalities involving the mean and the standard deviation of nonnegative real numbers

<p/> <p>Let <inline-formula><graphic file="1029-242X-2006-43465-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-43465-i2.gif"/></inline-formula> be the mean and the standard deviation of the components o...

Full description

Bibliographic Details
Main Author: Rojo Oscar
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2006/43465
id doaj-53739614a8754feb832d359a52952786
record_format Article
spelling doaj-53739614a8754feb832d359a529527862020-11-25T01:03:36ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2006-01-012006143465Inequalities involving the mean and the standard deviation of nonnegative real numbersRojo Oscar<p/> <p>Let <inline-formula><graphic file="1029-242X-2006-43465-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-43465-i2.gif"/></inline-formula> be the mean and the standard deviation of the components of the vector <inline-formula><graphic file="1029-242X-2006-43465-i3.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-2006-43465-i4.gif"/></inline-formula> with <inline-formula><graphic file="1029-242X-2006-43465-i5.gif"/></inline-formula> a positive integer. Here, we prove that if <inline-formula><graphic file="1029-242X-2006-43465-i6.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2006-43465-i7.gif"/></inline-formula> for <inline-formula><graphic file="1029-242X-2006-43465-i8.gif"/></inline-formula>. The equality holds if and only if the <inline-formula><graphic file="1029-242X-2006-43465-i9.gif"/></inline-formula> largest components of <inline-formula><graphic file="1029-242X-2006-43465-i10.gif"/></inline-formula> are equal. It follows that <inline-formula><graphic file="1029-242X-2006-43465-i11.gif"/></inline-formula> is a strictly increasing sequence converging to <inline-formula><graphic file="1029-242X-2006-43465-i12.gif"/></inline-formula>, the largest component of <inline-formula><graphic file="1029-242X-2006-43465-i13.gif"/></inline-formula>, except if the <inline-formula><graphic file="1029-242X-2006-43465-i14.gif"/></inline-formula> largest components of <inline-formula><graphic file="1029-242X-2006-43465-i15.gif"/></inline-formula> are equal. In this case, <inline-formula><graphic file="1029-242X-2006-43465-i16.gif"/></inline-formula> for all <inline-formula><graphic file="1029-242X-2006-43465-i17.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2006/43465
collection DOAJ
language English
format Article
sources DOAJ
author Rojo Oscar
spellingShingle Rojo Oscar
Inequalities involving the mean and the standard deviation of nonnegative real numbers
Journal of Inequalities and Applications
author_facet Rojo Oscar
author_sort Rojo Oscar
title Inequalities involving the mean and the standard deviation of nonnegative real numbers
title_short Inequalities involving the mean and the standard deviation of nonnegative real numbers
title_full Inequalities involving the mean and the standard deviation of nonnegative real numbers
title_fullStr Inequalities involving the mean and the standard deviation of nonnegative real numbers
title_full_unstemmed Inequalities involving the mean and the standard deviation of nonnegative real numbers
title_sort inequalities involving the mean and the standard deviation of nonnegative real numbers
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2006-01-01
description <p/> <p>Let <inline-formula><graphic file="1029-242X-2006-43465-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-43465-i2.gif"/></inline-formula> be the mean and the standard deviation of the components of the vector <inline-formula><graphic file="1029-242X-2006-43465-i3.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-2006-43465-i4.gif"/></inline-formula> with <inline-formula><graphic file="1029-242X-2006-43465-i5.gif"/></inline-formula> a positive integer. Here, we prove that if <inline-formula><graphic file="1029-242X-2006-43465-i6.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2006-43465-i7.gif"/></inline-formula> for <inline-formula><graphic file="1029-242X-2006-43465-i8.gif"/></inline-formula>. The equality holds if and only if the <inline-formula><graphic file="1029-242X-2006-43465-i9.gif"/></inline-formula> largest components of <inline-formula><graphic file="1029-242X-2006-43465-i10.gif"/></inline-formula> are equal. It follows that <inline-formula><graphic file="1029-242X-2006-43465-i11.gif"/></inline-formula> is a strictly increasing sequence converging to <inline-formula><graphic file="1029-242X-2006-43465-i12.gif"/></inline-formula>, the largest component of <inline-formula><graphic file="1029-242X-2006-43465-i13.gif"/></inline-formula>, except if the <inline-formula><graphic file="1029-242X-2006-43465-i14.gif"/></inline-formula> largest components of <inline-formula><graphic file="1029-242X-2006-43465-i15.gif"/></inline-formula> are equal. In this case, <inline-formula><graphic file="1029-242X-2006-43465-i16.gif"/></inline-formula> for all <inline-formula><graphic file="1029-242X-2006-43465-i17.gif"/></inline-formula>.</p>
url http://www.journalofinequalitiesandapplications.com/content/2006/43465
work_keys_str_mv AT rojooscar inequalitiesinvolvingthemeanandthestandarddeviationofnonnegativerealnumbers
_version_ 1725200417541849088