Inequalities involving the mean and the standard deviation of nonnegative real numbers
<p/> <p>Let <inline-formula><graphic file="1029-242X-2006-43465-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-43465-i2.gif"/></inline-formula> be the mean and the standard deviation of the components o...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2006-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2006/43465 |
id |
doaj-53739614a8754feb832d359a52952786 |
---|---|
record_format |
Article |
spelling |
doaj-53739614a8754feb832d359a529527862020-11-25T01:03:36ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2006-01-012006143465Inequalities involving the mean and the standard deviation of nonnegative real numbersRojo Oscar<p/> <p>Let <inline-formula><graphic file="1029-242X-2006-43465-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-43465-i2.gif"/></inline-formula> be the mean and the standard deviation of the components of the vector <inline-formula><graphic file="1029-242X-2006-43465-i3.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-2006-43465-i4.gif"/></inline-formula> with <inline-formula><graphic file="1029-242X-2006-43465-i5.gif"/></inline-formula> a positive integer. Here, we prove that if <inline-formula><graphic file="1029-242X-2006-43465-i6.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2006-43465-i7.gif"/></inline-formula> for <inline-formula><graphic file="1029-242X-2006-43465-i8.gif"/></inline-formula>. The equality holds if and only if the <inline-formula><graphic file="1029-242X-2006-43465-i9.gif"/></inline-formula> largest components of <inline-formula><graphic file="1029-242X-2006-43465-i10.gif"/></inline-formula> are equal. It follows that <inline-formula><graphic file="1029-242X-2006-43465-i11.gif"/></inline-formula> is a strictly increasing sequence converging to <inline-formula><graphic file="1029-242X-2006-43465-i12.gif"/></inline-formula>, the largest component of <inline-formula><graphic file="1029-242X-2006-43465-i13.gif"/></inline-formula>, except if the <inline-formula><graphic file="1029-242X-2006-43465-i14.gif"/></inline-formula> largest components of <inline-formula><graphic file="1029-242X-2006-43465-i15.gif"/></inline-formula> are equal. In this case, <inline-formula><graphic file="1029-242X-2006-43465-i16.gif"/></inline-formula> for all <inline-formula><graphic file="1029-242X-2006-43465-i17.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2006/43465 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rojo Oscar |
spellingShingle |
Rojo Oscar Inequalities involving the mean and the standard deviation of nonnegative real numbers Journal of Inequalities and Applications |
author_facet |
Rojo Oscar |
author_sort |
Rojo Oscar |
title |
Inequalities involving the mean and the standard deviation of nonnegative real numbers |
title_short |
Inequalities involving the mean and the standard deviation of nonnegative real numbers |
title_full |
Inequalities involving the mean and the standard deviation of nonnegative real numbers |
title_fullStr |
Inequalities involving the mean and the standard deviation of nonnegative real numbers |
title_full_unstemmed |
Inequalities involving the mean and the standard deviation of nonnegative real numbers |
title_sort |
inequalities involving the mean and the standard deviation of nonnegative real numbers |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2006-01-01 |
description |
<p/> <p>Let <inline-formula><graphic file="1029-242X-2006-43465-i1.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2006-43465-i2.gif"/></inline-formula> be the mean and the standard deviation of the components of the vector <inline-formula><graphic file="1029-242X-2006-43465-i3.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-2006-43465-i4.gif"/></inline-formula> with <inline-formula><graphic file="1029-242X-2006-43465-i5.gif"/></inline-formula> a positive integer. Here, we prove that if <inline-formula><graphic file="1029-242X-2006-43465-i6.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2006-43465-i7.gif"/></inline-formula> for <inline-formula><graphic file="1029-242X-2006-43465-i8.gif"/></inline-formula>. The equality holds if and only if the <inline-formula><graphic file="1029-242X-2006-43465-i9.gif"/></inline-formula> largest components of <inline-formula><graphic file="1029-242X-2006-43465-i10.gif"/></inline-formula> are equal. It follows that <inline-formula><graphic file="1029-242X-2006-43465-i11.gif"/></inline-formula> is a strictly increasing sequence converging to <inline-formula><graphic file="1029-242X-2006-43465-i12.gif"/></inline-formula>, the largest component of <inline-formula><graphic file="1029-242X-2006-43465-i13.gif"/></inline-formula>, except if the <inline-formula><graphic file="1029-242X-2006-43465-i14.gif"/></inline-formula> largest components of <inline-formula><graphic file="1029-242X-2006-43465-i15.gif"/></inline-formula> are equal. In this case, <inline-formula><graphic file="1029-242X-2006-43465-i16.gif"/></inline-formula> for all <inline-formula><graphic file="1029-242X-2006-43465-i17.gif"/></inline-formula>.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2006/43465 |
work_keys_str_mv |
AT rojooscar inequalitiesinvolvingthemeanandthestandarddeviationofnonnegativerealnumbers |
_version_ |
1725200417541849088 |