Real-Time Building Smart Charging System Based on PV Forecast and Li-ion Battery Degradation

This paper proposes a two-stage smart charging algorithm for future buildings equipped with an electric vehicle, battery energy storage, solar panels, and a heat pump. The first stage is a non-linear programming model that optimizes the charging of electric vehicles and battery energy storage based...

Full description

Bibliographic Details
Main Authors: Wiljan Vermeer, Gautham Ram Chandra Mouli, Pavol Bauer
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Energies
Subjects:
V2G
Online Access:https://www.mdpi.com/1996-1073/13/13/3415
Description
Summary:This paper proposes a two-stage smart charging algorithm for future buildings equipped with an electric vehicle, battery energy storage, solar panels, and a heat pump. The first stage is a non-linear programming model that optimizes the charging of electric vehicles and battery energy storage based on a prediction of photovoltaïc (PV) power, building demand, electricity, and frequency regulation prices. Additionally, a Li-ion degradation model is used to assess the operational costs of the electric vehicle (EV) and battery. The second stage is a real-time control scheme that controls charging within the optimization time steps. Finally, both stages are incorporated in a moving horizon control framework, which is used to minimize and compensate for forecasting errors. It will be shown that the real-time control scheme has a significant influence on the obtained cost reduction. Furthermore, it will be shown that the degradation of an electric vehicle and battery energy storage system are non-negligible parts of the total cost of energy. However, despite relatively high operational costs, V2G can still be cost-effective when controlled optimally. The proposed solution decreases the total cost of energy with 98.6% compared to an uncontrolled case. Additionally, the financial benefits of vehicle-to-grid and operating as primary frequency regulation reserve are assessed.
ISSN:1996-1073