Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus <it>Pocillopora </it>in Clipperton

<p>Abstract</p> <p>Background</p> <p>Usual methods for inferring species boundaries from molecular sequence data rely either on gene trees or on population genetic analyses. Another way of delimiting species, based on a view of species as "fields for recombination&...

Full description

Bibliographic Details
Main Authors: Flot Jean-François, Couloux Arnaud, Tillier Simon
Format: Article
Language:English
Published: BMC 2010-11-01
Series:BMC Evolutionary Biology
Online Access:http://www.biomedcentral.com/1471-2148/10/372
id doaj-536e330dd44646429a268a3ac5794639
record_format Article
spelling doaj-536e330dd44646429a268a3ac57946392021-09-02T02:33:05ZengBMCBMC Evolutionary Biology1471-21482010-11-0110137210.1186/1471-2148-10-372Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus <it>Pocillopora </it>in ClippertonFlot Jean-FrançoisCouloux ArnaudTillier Simon<p>Abstract</p> <p>Background</p> <p>Usual methods for inferring species boundaries from molecular sequence data rely either on gene trees or on population genetic analyses. Another way of delimiting species, based on a view of species as "fields for recombination" (FFRs) characterized by mutual allelic exclusivity, was suggested in 1995 by Doyle. Here we propose to use haplowebs (haplotype networks with additional connections between haplotypes found co-occurring in heterozygous individuals) to visualize and delineate single-locus FFRs (sl-FFRs). Furthermore, we introduce a method to quantify the reliability of putative species boundaries according to the number of independent markers that support them, and illustrate this approach with a case study of taxonomically difficult corals of the genus <it>Pocillopora </it>collected around Clipperton Island (far eastern Pacific).</p> <p>Results</p> <p>One haploweb built from intron sequences of the ATP synthase β subunit gene revealed the presence of two sl-FFRs among our 74 coral samples, whereas a second one built from ITS sequences turned out to be composed of four sl-FFRs. As a third independent marker, we performed a combined analysis of two regions of the mitochondrial genome: since haplowebs are not suited to analyze non-recombining markers, individuals were sorted into four haplogroups according to their mitochondrial sequences. Among all possible bipartitions of our set of samples, thirteen were supported by at least one molecular dataset, none by two and only one by all three datasets: this congruent pattern obtained from independent nuclear and mitochondrial markers indicates that two species of <it>Pocillopora </it>are present in Clipperton.</p> <p>Conclusions</p> <p>Our approach builds on Doyle's method and extends it by introducing an intuitive, user-friendly graphical representation and by proposing a conceptual framework to analyze and quantify the congruence between sl-FFRs obtained from several independent markers. Like delineation methods based on population-level statistical approaches, our method can distinguish closely-related species that have not yet reached reciprocal monophyly at most or all of their loci; like tree-based approaches, it can yield meaningful conclusions using a number of independent markers as low as three. Future efforts will aim to develop programs that speed up the construction of haplowebs from FASTA sequence alignments and help perform the congruence analysis outlined in this article.</p> http://www.biomedcentral.com/1471-2148/10/372
collection DOAJ
language English
format Article
sources DOAJ
author Flot Jean-François
Couloux Arnaud
Tillier Simon
spellingShingle Flot Jean-François
Couloux Arnaud
Tillier Simon
Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus <it>Pocillopora </it>in Clipperton
BMC Evolutionary Biology
author_facet Flot Jean-François
Couloux Arnaud
Tillier Simon
author_sort Flot Jean-François
title Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus <it>Pocillopora </it>in Clipperton
title_short Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus <it>Pocillopora </it>in Clipperton
title_full Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus <it>Pocillopora </it>in Clipperton
title_fullStr Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus <it>Pocillopora </it>in Clipperton
title_full_unstemmed Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus <it>Pocillopora </it>in Clipperton
title_sort haplowebs as a graphical tool for delimiting species: a revival of doyle's "field for recombination" approach and its application to the coral genus <it>pocillopora </it>in clipperton
publisher BMC
series BMC Evolutionary Biology
issn 1471-2148
publishDate 2010-11-01
description <p>Abstract</p> <p>Background</p> <p>Usual methods for inferring species boundaries from molecular sequence data rely either on gene trees or on population genetic analyses. Another way of delimiting species, based on a view of species as "fields for recombination" (FFRs) characterized by mutual allelic exclusivity, was suggested in 1995 by Doyle. Here we propose to use haplowebs (haplotype networks with additional connections between haplotypes found co-occurring in heterozygous individuals) to visualize and delineate single-locus FFRs (sl-FFRs). Furthermore, we introduce a method to quantify the reliability of putative species boundaries according to the number of independent markers that support them, and illustrate this approach with a case study of taxonomically difficult corals of the genus <it>Pocillopora </it>collected around Clipperton Island (far eastern Pacific).</p> <p>Results</p> <p>One haploweb built from intron sequences of the ATP synthase β subunit gene revealed the presence of two sl-FFRs among our 74 coral samples, whereas a second one built from ITS sequences turned out to be composed of four sl-FFRs. As a third independent marker, we performed a combined analysis of two regions of the mitochondrial genome: since haplowebs are not suited to analyze non-recombining markers, individuals were sorted into four haplogroups according to their mitochondrial sequences. Among all possible bipartitions of our set of samples, thirteen were supported by at least one molecular dataset, none by two and only one by all three datasets: this congruent pattern obtained from independent nuclear and mitochondrial markers indicates that two species of <it>Pocillopora </it>are present in Clipperton.</p> <p>Conclusions</p> <p>Our approach builds on Doyle's method and extends it by introducing an intuitive, user-friendly graphical representation and by proposing a conceptual framework to analyze and quantify the congruence between sl-FFRs obtained from several independent markers. Like delineation methods based on population-level statistical approaches, our method can distinguish closely-related species that have not yet reached reciprocal monophyly at most or all of their loci; like tree-based approaches, it can yield meaningful conclusions using a number of independent markers as low as three. Future efforts will aim to develop programs that speed up the construction of haplowebs from FASTA sequence alignments and help perform the congruence analysis outlined in this article.</p>
url http://www.biomedcentral.com/1471-2148/10/372
work_keys_str_mv AT flotjeanfrancois haplowebsasagraphicaltoolfordelimitingspeciesarevivalofdoylesfieldforrecombinationapproachanditsapplicationtothecoralgenusitpocilloporaitinclipperton
AT coulouxarnaud haplowebsasagraphicaltoolfordelimitingspeciesarevivalofdoylesfieldforrecombinationapproachanditsapplicationtothecoralgenusitpocilloporaitinclipperton
AT tilliersimon haplowebsasagraphicaltoolfordelimitingspeciesarevivalofdoylesfieldforrecombinationapproachanditsapplicationtothecoralgenusitpocilloporaitinclipperton
_version_ 1721181227587731456