Data on processing of Ti-25Nb-25Zr β-titanium alloys via powder metallurgy route: Methodology, microstructure and mechanical properties

The data presented in this article are related to the research article entitled “Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition” (Dirras et al., 2017) [1]. The datasheet describes the methods used to...

Full description

Bibliographic Details
Main Authors: D. Ueda, G. Dirras, A. Hocini, D. Tingaud, K. Ameyama, P. Langlois, D. Vrel, Z. Trzaska
Format: Article
Language:English
Published: Elsevier 2018-04-01
Series:Data in Brief
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340918300969
Description
Summary:The data presented in this article are related to the research article entitled “Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition” (Dirras et al., 2017) [1]. The datasheet describes the methods used to fabricate two β-titanium alloys having conventional microstructure and so-called harmonic structure (HS) design via a powder metallurgy route, namely the spark plasma sintering (SPS) route. The data show the as-processed unconsolidated powder microstructures as well as the post-SPS ones. The data illustrate the mechanical response under cyclic shear loading of consolidated alloy specimens. The data show how electron back scattering diffraction(EBSD) method is used to clearly identify induced deformation features in the case of the conventional alloy. Keywords: Titanium alloys, Spark plasma sintering, Harmonic structure, Cyclic shear
ISSN:2352-3409