Mathematical modeling of an optimal oncotherapy for malignant tumors

The paper presents a mathematical model of the optimal treatment for malignant neoplasms. The neoplasm is considered as a distributed parameter object. The scheme for an optimal oncotherapy using a system of partial differential equations of parabolic type is analyzed. The authors propose a solutio...

Full description

Bibliographic Details
Main Authors: Igor A. Narkevich, Ekaterina V. Milovanovich, Olga V. Slita, Vladimir Yu. Tertychny-Dauri
Format: Article
Language:English
Published: Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University) 2021-08-01
Series:Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki
Subjects:
Online Access:https://ntv.ifmo.ru/file/article/20594.pdf
id doaj-535ff785805d4eaa83b1ae51c035f137
record_format Article
spelling doaj-535ff785805d4eaa83b1ae51c035f1372021-08-23T11:14:40ZengSaint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki2226-14942500-03732021-08-0121459960510.17586/2226-1494-2021-21-4-599-605Mathematical modeling of an optimal oncotherapy for malignant tumorsIgor A. Narkevich0https://orcid.org/0000-0002-5483-6626Ekaterina V. Milovanovich1https://orcid.org/0000-0002-9069-8574Olga V. Slita2https://orcid.org/0000-0001-7119-3629Vladimir Yu. Tertychny-Dauri3https://orcid.org/0000-0003-4671-7659D.Sc., Professor, Rector, Head of Chair, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg, 197376, Russian FederationPhD, Associate Professor, Associate Professor, ITMO University, Saint Petersburg, 197101, Russian Federation; Head of Chair, Saint-Petersburg State Chemical and Pharmaceutical University, Saint Petersburg, 197376, Russian FederationPhD, Associate Professor, Associate Professor, ITMO University, Saint Petersburg, 197101, Russian FederationD.Sc., Professor, Senior Lecturer, ITMO University, Saint Petersburg, 197101, Russian FederationThe paper presents a mathematical model of the optimal treatment for malignant neoplasms. The neoplasm is considered as a distributed parameter object. The scheme for an optimal oncotherapy using a system of partial differential equations of parabolic type is analyzed. The authors propose a solution to the problem using Bellman optimization and the method of adjustable parameters. The optimal control law of the oncotherapy mode is derived. The main results include a scheme for the formation of the Bellman optimal strategy for regulation of control parameters and dynamic parameters, under which the target conditions are guaranteed over time. The work describes an optimization criterion that reflects the total costs of the control system for the oncological treatment. Simulation results demonstrate the efficiency of the optimal control of treatment process. The results of this work can be used in modern clinical practice at the stage of predictive selection of the most effective treatment strategy.https://ntv.ifmo.ru/file/article/20594.pdfoptimal controldistributed-parameters plantoncotherapydiffusion processquality functional
collection DOAJ
language English
format Article
sources DOAJ
author Igor A. Narkevich
Ekaterina V. Milovanovich
Olga V. Slita
Vladimir Yu. Tertychny-Dauri
spellingShingle Igor A. Narkevich
Ekaterina V. Milovanovich
Olga V. Slita
Vladimir Yu. Tertychny-Dauri
Mathematical modeling of an optimal oncotherapy for malignant tumors
Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki
optimal control
distributed-parameters plant
oncotherapy
diffusion process
quality functional
author_facet Igor A. Narkevich
Ekaterina V. Milovanovich
Olga V. Slita
Vladimir Yu. Tertychny-Dauri
author_sort Igor A. Narkevich
title Mathematical modeling of an optimal oncotherapy for malignant tumors
title_short Mathematical modeling of an optimal oncotherapy for malignant tumors
title_full Mathematical modeling of an optimal oncotherapy for malignant tumors
title_fullStr Mathematical modeling of an optimal oncotherapy for malignant tumors
title_full_unstemmed Mathematical modeling of an optimal oncotherapy for malignant tumors
title_sort mathematical modeling of an optimal oncotherapy for malignant tumors
publisher Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)
series Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki
issn 2226-1494
2500-0373
publishDate 2021-08-01
description The paper presents a mathematical model of the optimal treatment for malignant neoplasms. The neoplasm is considered as a distributed parameter object. The scheme for an optimal oncotherapy using a system of partial differential equations of parabolic type is analyzed. The authors propose a solution to the problem using Bellman optimization and the method of adjustable parameters. The optimal control law of the oncotherapy mode is derived. The main results include a scheme for the formation of the Bellman optimal strategy for regulation of control parameters and dynamic parameters, under which the target conditions are guaranteed over time. The work describes an optimization criterion that reflects the total costs of the control system for the oncological treatment. Simulation results demonstrate the efficiency of the optimal control of treatment process. The results of this work can be used in modern clinical practice at the stage of predictive selection of the most effective treatment strategy.
topic optimal control
distributed-parameters plant
oncotherapy
diffusion process
quality functional
url https://ntv.ifmo.ru/file/article/20594.pdf
work_keys_str_mv AT igoranarkevich mathematicalmodelingofanoptimaloncotherapyformalignanttumors
AT ekaterinavmilovanovich mathematicalmodelingofanoptimaloncotherapyformalignanttumors
AT olgavslita mathematicalmodelingofanoptimaloncotherapyformalignanttumors
AT vladimiryutertychnydauri mathematicalmodelingofanoptimaloncotherapyformalignanttumors
_version_ 1721198499712729088