Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers

The dynamics of optical soliton molecules in ultrafast lasers can reveal the intrinsic self-organized characteristics of dissipative systems. The photonic time-stretch dispersive Fourier transformation (TS-DFT) technology provides an effective method to observe the internal motion of soliton molecul...

Full description

Bibliographic Details
Main Authors: Caiyun Li, Jiangyong He, Ruijing He, Yange Liu, Yang Yue, Weiwei Liu, Luhe Zhang, Longfei Zhu, Mengjie Zhou, Kaiyan Zhu, Zhi Wang
Format: Article
Language:English
Published: AIP Publishing LLC 2020-11-01
Series:APL Photonics
Online Access:http://dx.doi.org/10.1063/5.0024836
id doaj-535c789757234e6e932b88ec3f728f9b
record_format Article
spelling doaj-535c789757234e6e932b88ec3f728f9b2020-12-04T12:45:26ZengAIP Publishing LLCAPL Photonics2378-09672020-11-01511116101116101-1110.1063/5.0024836Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasersCaiyun Li0Jiangyong He1Ruijing He2Yange Liu3Yang Yue4Weiwei Liu5Luhe Zhang6Longfei Zhu7Mengjie Zhou8Kaiyan Zhu9Zhi Wang10Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaThe dynamics of optical soliton molecules in ultrafast lasers can reveal the intrinsic self-organized characteristics of dissipative systems. The photonic time-stretch dispersive Fourier transformation (TS-DFT) technology provides an effective method to observe the internal motion of soliton molecules real time. However, the evolution of complex soliton molecular structures has not been reconstructed from TS-DFT data satisfactorily. We train a residual convolutional neural network (RCNN) with simulated TS-DFT data and validate it using arbitrarily generated TS-DFT data to retrieve the separation and relative phase of solitons in three- and six-soliton molecules. Then, we use RCNNs to analyze the experimental TS-DFT data of three-soliton molecules in a passive mode-locked laser. The solitons can exhibit different phase evolution processes and have compound vibration frequencies simultaneously. The phase evolutions exhibit behavior consistent with single-shot autocorrelation results. Compared with autocorrelation methods, the RCNN can obtain the actual phase difference and analyze soliton molecules comprising more solitons and almost equally spaced soliton pairs. This study provides an effective method for exploring complex soliton molecule dynamics.http://dx.doi.org/10.1063/5.0024836
collection DOAJ
language English
format Article
sources DOAJ
author Caiyun Li
Jiangyong He
Ruijing He
Yange Liu
Yang Yue
Weiwei Liu
Luhe Zhang
Longfei Zhu
Mengjie Zhou
Kaiyan Zhu
Zhi Wang
spellingShingle Caiyun Li
Jiangyong He
Ruijing He
Yange Liu
Yang Yue
Weiwei Liu
Luhe Zhang
Longfei Zhu
Mengjie Zhou
Kaiyan Zhu
Zhi Wang
Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers
APL Photonics
author_facet Caiyun Li
Jiangyong He
Ruijing He
Yange Liu
Yang Yue
Weiwei Liu
Luhe Zhang
Longfei Zhu
Mengjie Zhou
Kaiyan Zhu
Zhi Wang
author_sort Caiyun Li
title Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers
title_short Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers
title_full Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers
title_fullStr Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers
title_full_unstemmed Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers
title_sort analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers
publisher AIP Publishing LLC
series APL Photonics
issn 2378-0967
publishDate 2020-11-01
description The dynamics of optical soliton molecules in ultrafast lasers can reveal the intrinsic self-organized characteristics of dissipative systems. The photonic time-stretch dispersive Fourier transformation (TS-DFT) technology provides an effective method to observe the internal motion of soliton molecules real time. However, the evolution of complex soliton molecular structures has not been reconstructed from TS-DFT data satisfactorily. We train a residual convolutional neural network (RCNN) with simulated TS-DFT data and validate it using arbitrarily generated TS-DFT data to retrieve the separation and relative phase of solitons in three- and six-soliton molecules. Then, we use RCNNs to analyze the experimental TS-DFT data of three-soliton molecules in a passive mode-locked laser. The solitons can exhibit different phase evolution processes and have compound vibration frequencies simultaneously. The phase evolutions exhibit behavior consistent with single-shot autocorrelation results. Compared with autocorrelation methods, the RCNN can obtain the actual phase difference and analyze soliton molecules comprising more solitons and almost equally spaced soliton pairs. This study provides an effective method for exploring complex soliton molecule dynamics.
url http://dx.doi.org/10.1063/5.0024836
work_keys_str_mv AT caiyunli analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers
AT jiangyonghe analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers
AT ruijinghe analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers
AT yangeliu analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers
AT yangyue analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers
AT weiweiliu analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers
AT luhezhang analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers
AT longfeizhu analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers
AT mengjiezhou analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers
AT kaiyanzhu analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers
AT zhiwang analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers
_version_ 1724400448801079296