Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers
The dynamics of optical soliton molecules in ultrafast lasers can reveal the intrinsic self-organized characteristics of dissipative systems. The photonic time-stretch dispersive Fourier transformation (TS-DFT) technology provides an effective method to observe the internal motion of soliton molecul...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2020-11-01
|
Series: | APL Photonics |
Online Access: | http://dx.doi.org/10.1063/5.0024836 |
id |
doaj-535c789757234e6e932b88ec3f728f9b |
---|---|
record_format |
Article |
spelling |
doaj-535c789757234e6e932b88ec3f728f9b2020-12-04T12:45:26ZengAIP Publishing LLCAPL Photonics2378-09672020-11-01511116101116101-1110.1063/5.0024836Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasersCaiyun Li0Jiangyong He1Ruijing He2Yange Liu3Yang Yue4Weiwei Liu5Luhe Zhang6Longfei Zhu7Mengjie Zhou8Kaiyan Zhu9Zhi Wang10Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaTianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, ChinaThe dynamics of optical soliton molecules in ultrafast lasers can reveal the intrinsic self-organized characteristics of dissipative systems. The photonic time-stretch dispersive Fourier transformation (TS-DFT) technology provides an effective method to observe the internal motion of soliton molecules real time. However, the evolution of complex soliton molecular structures has not been reconstructed from TS-DFT data satisfactorily. We train a residual convolutional neural network (RCNN) with simulated TS-DFT data and validate it using arbitrarily generated TS-DFT data to retrieve the separation and relative phase of solitons in three- and six-soliton molecules. Then, we use RCNNs to analyze the experimental TS-DFT data of three-soliton molecules in a passive mode-locked laser. The solitons can exhibit different phase evolution processes and have compound vibration frequencies simultaneously. The phase evolutions exhibit behavior consistent with single-shot autocorrelation results. Compared with autocorrelation methods, the RCNN can obtain the actual phase difference and analyze soliton molecules comprising more solitons and almost equally spaced soliton pairs. This study provides an effective method for exploring complex soliton molecule dynamics.http://dx.doi.org/10.1063/5.0024836 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Caiyun Li Jiangyong He Ruijing He Yange Liu Yang Yue Weiwei Liu Luhe Zhang Longfei Zhu Mengjie Zhou Kaiyan Zhu Zhi Wang |
spellingShingle |
Caiyun Li Jiangyong He Ruijing He Yange Liu Yang Yue Weiwei Liu Luhe Zhang Longfei Zhu Mengjie Zhou Kaiyan Zhu Zhi Wang Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers APL Photonics |
author_facet |
Caiyun Li Jiangyong He Ruijing He Yange Liu Yang Yue Weiwei Liu Luhe Zhang Longfei Zhu Mengjie Zhou Kaiyan Zhu Zhi Wang |
author_sort |
Caiyun Li |
title |
Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers |
title_short |
Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers |
title_full |
Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers |
title_fullStr |
Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers |
title_full_unstemmed |
Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers |
title_sort |
analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers |
publisher |
AIP Publishing LLC |
series |
APL Photonics |
issn |
2378-0967 |
publishDate |
2020-11-01 |
description |
The dynamics of optical soliton molecules in ultrafast lasers can reveal the intrinsic self-organized characteristics of dissipative systems. The photonic time-stretch dispersive Fourier transformation (TS-DFT) technology provides an effective method to observe the internal motion of soliton molecules real time. However, the evolution of complex soliton molecular structures has not been reconstructed from TS-DFT data satisfactorily. We train a residual convolutional neural network (RCNN) with simulated TS-DFT data and validate it using arbitrarily generated TS-DFT data to retrieve the separation and relative phase of solitons in three- and six-soliton molecules. Then, we use RCNNs to analyze the experimental TS-DFT data of three-soliton molecules in a passive mode-locked laser. The solitons can exhibit different phase evolution processes and have compound vibration frequencies simultaneously. The phase evolutions exhibit behavior consistent with single-shot autocorrelation results. Compared with autocorrelation methods, the RCNN can obtain the actual phase difference and analyze soliton molecules comprising more solitons and almost equally spaced soliton pairs. This study provides an effective method for exploring complex soliton molecule dynamics. |
url |
http://dx.doi.org/10.1063/5.0024836 |
work_keys_str_mv |
AT caiyunli analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers AT jiangyonghe analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers AT ruijinghe analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers AT yangeliu analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers AT yangyue analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers AT weiweiliu analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers AT luhezhang analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers AT longfeizhu analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers AT mengjiezhou analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers AT kaiyanzhu analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers AT zhiwang analysisofrealtimespectralinterferenceusingadeepneuralnetworktoreconstructmultisolitondynamicsinmodelockedlasers |
_version_ |
1724400448801079296 |