Optimal Configuration of Photovoltaic-wind-storage Microgrid for Agricultural Irrigation in Mountainous Areas

Water and electricity supply for irrigation is difficult in remote mountainous areas. This paper explores agricultural irrigation systems’ integration mechanism, pumped storage power plants, and renewable power sources in mountainous areas to solve this problem. It establishes a microgrid power supp...

Full description

Bibliographic Details
Main Authors: Zhang Yangyang, Li Bin, Deng Youxiong, Lian Chunjie, Wang Jingde
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/32/e3sconf_posei2021_02024.pdf
Description
Summary:Water and electricity supply for irrigation is difficult in remote mountainous areas. This paper explores agricultural irrigation systems’ integration mechanism, pumped storage power plants, and renewable power sources in mountainous areas to solve this problem. It establishes a microgrid power supply system with multiple complementary energy sources according to local conditions. By analyzing the load of agricultural irrigation in mountainous areas, the irrigation water consumption and electricity consumption are obtained. The capacity of pumped storage power stations, wind power, and photovoltaic power generation in the microgrid can be configured accordingly. They use the renewable power supply active power fluctuation rate index as a constraint and use the spectrum analysis method to calibrate the capacity configuration results. Finally, the scenic storage microgrid model is constructed and solved to minimize the microgrid’s grid connection cost. The algorithm shows that the proposed capacity allocation method can meet the irrigation load demand and realize the microgrid’s coordinated operation.
ISSN:2267-1242