A top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies
Reema Narayan,1 Abhyuday Pednekar,1 Dipshikha Bhuyan,1,2 Chaitra Gowda,1,3 KB Koteshwara,1 Usha Yogendra Nayak1 1Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India; 2Lupin Ltd. (Research Park), Pune, Maharashtra, India; 3Micro Labs Ltd., Beng...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2017-07-01
|
Series: | International Journal of Nanomedicine |
Subjects: | |
Online Access: | https://www.dovepress.com/a-top-down-technique-to-improve-the-solubility-and-bioavailability-of--peer-reviewed-article-IJN |
id |
doaj-5349c545c6ab43a5b5e1a45e2a6ce751 |
---|---|
record_format |
Article |
spelling |
doaj-5349c545c6ab43a5b5e1a45e2a6ce7512020-11-24T23:13:03ZengDove Medical PressInternational Journal of Nanomedicine1178-20132017-07-01Volume 124921493533695A top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studiesNarayan RPednekar ABhuyan DGowda CKoteshwara KBNayak UYReema Narayan,1 Abhyuday Pednekar,1 Dipshikha Bhuyan,1,2 Chaitra Gowda,1,3 KB Koteshwara,1 Usha Yogendra Nayak1 1Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India; 2Lupin Ltd. (Research Park), Pune, Maharashtra, India; 3Micro Labs Ltd., Bengaluru, Karnataka, India Abstract: The aim of the present work was to tackle the solubility issue of a biopharmaceutics classification system (BCS)-II drug, aceclofenac. Although a number of attempts to increase the aqueous solubility have been made, none of the methods were taken up for scale-up. Hence size reduction technique by a top-down approach using wet milling process was utilized to improve the solubility and, consequently, the dissolution velocity of aceclofenac. The quality of the final product was ensured by Quality by Design approach wherein the effects of critical material attributes and critical process parameters were assessed on the critical quality attributes (CQAs) of nanocrystals. Box–Behnken design was applied to evaluate these effects on critical quality attributes. The optimized nanocrystals had a particle size of 484.7±54.12 nm with a polydispersity index (PDI) of 0.108±0.009. The solid state characterization of the formulation revealed that the crystalline nature of the drug was slightly reduced after the milling process. With the reduced particle size, the solubility of the nanocrystals was found to increase in both water and 0.1 N HCl when compared with that of unmilled pure aceclofenac. These results were further supported by in vitro release studies of nanocrystals where an appreciable dissolution velocity with 100.07%±2.38% release was observed for aceclofenac nanocrystals compared with 47.66%±4.53% release for pure unmilled aceclofenac at the end of 2 h. The in vivo pharmacokinetic data generated showed a statistically significant increase in the Cmax for aceclofenac nanocrystals of 3.75±0.28 µg/mL (for pure unmilled aceclofenac Cmax was 1.96±0.17 µg/mL). The results obtained indicated that the developed nanocrystals of aceclofenac were successful in improving the solubility, thus the absorption and bioavailability of the drug. Hence, it may be a viable and cost-effective alternative to the current therapy. Keywords: aceclofenac, nanocrystals, ball milling, QbD, DoE, box-behnken designhttps://www.dovepress.com/a-top-down-technique-to-improve-the-solubility-and-bioavailability-of--peer-reviewed-article-IJNAceclofenacnanocrystalsball millingQbDDoEBox-Behnken design |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Narayan R Pednekar A Bhuyan D Gowda C Koteshwara KB Nayak UY |
spellingShingle |
Narayan R Pednekar A Bhuyan D Gowda C Koteshwara KB Nayak UY A top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies International Journal of Nanomedicine Aceclofenac nanocrystals ball milling QbD DoE Box-Behnken design |
author_facet |
Narayan R Pednekar A Bhuyan D Gowda C Koteshwara KB Nayak UY |
author_sort |
Narayan R |
title |
A top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies |
title_short |
A top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies |
title_full |
A top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies |
title_fullStr |
A top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies |
title_full_unstemmed |
A top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies |
title_sort |
top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies |
publisher |
Dove Medical Press |
series |
International Journal of Nanomedicine |
issn |
1178-2013 |
publishDate |
2017-07-01 |
description |
Reema Narayan,1 Abhyuday Pednekar,1 Dipshikha Bhuyan,1,2 Chaitra Gowda,1,3 KB Koteshwara,1 Usha Yogendra Nayak1 1Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India; 2Lupin Ltd. (Research Park), Pune, Maharashtra, India; 3Micro Labs Ltd., Bengaluru, Karnataka, India Abstract: The aim of the present work was to tackle the solubility issue of a biopharmaceutics classification system (BCS)-II drug, aceclofenac. Although a number of attempts to increase the aqueous solubility have been made, none of the methods were taken up for scale-up. Hence size reduction technique by a top-down approach using wet milling process was utilized to improve the solubility and, consequently, the dissolution velocity of aceclofenac. The quality of the final product was ensured by Quality by Design approach wherein the effects of critical material attributes and critical process parameters were assessed on the critical quality attributes (CQAs) of nanocrystals. Box–Behnken design was applied to evaluate these effects on critical quality attributes. The optimized nanocrystals had a particle size of 484.7±54.12 nm with a polydispersity index (PDI) of 0.108±0.009. The solid state characterization of the formulation revealed that the crystalline nature of the drug was slightly reduced after the milling process. With the reduced particle size, the solubility of the nanocrystals was found to increase in both water and 0.1 N HCl when compared with that of unmilled pure aceclofenac. These results were further supported by in vitro release studies of nanocrystals where an appreciable dissolution velocity with 100.07%±2.38% release was observed for aceclofenac nanocrystals compared with 47.66%±4.53% release for pure unmilled aceclofenac at the end of 2 h. The in vivo pharmacokinetic data generated showed a statistically significant increase in the Cmax for aceclofenac nanocrystals of 3.75±0.28 µg/mL (for pure unmilled aceclofenac Cmax was 1.96±0.17 µg/mL). The results obtained indicated that the developed nanocrystals of aceclofenac were successful in improving the solubility, thus the absorption and bioavailability of the drug. Hence, it may be a viable and cost-effective alternative to the current therapy. Keywords: aceclofenac, nanocrystals, ball milling, QbD, DoE, box-behnken design |
topic |
Aceclofenac nanocrystals ball milling QbD DoE Box-Behnken design |
url |
https://www.dovepress.com/a-top-down-technique-to-improve-the-solubility-and-bioavailability-of--peer-reviewed-article-IJN |
work_keys_str_mv |
AT narayanr atopdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies AT pednekara atopdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies AT bhuyand atopdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies AT gowdac atopdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies AT koteshwarakb atopdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies AT nayakuy atopdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies AT narayanr topdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies AT pednekara topdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies AT bhuyand topdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies AT gowdac topdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies AT koteshwarakb topdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies AT nayakuy topdowntechniquetoimprovethesolubilityandbioavailabilityofaceclofenacinvitroandinvivostudies |
_version_ |
1725599660483018752 |