Summary: | The Solar collectors and cogeneration units have gained increasing attention in research recently, while being developed and deployed rapidly. However, due to the instability of the solar energy, the heat flux input of solar collectors is unstable potentially causing an adverse effect on the cogeneration unit. This paper presents the mathematical models for two cogeneration units: (a) the thermal series U-shaped segmented unidirectional heat pipe array cogeneration unit with thermoelectric generator (TEG-TSUSUHP) and (b) the thermal parallel U-shaped segmented unidirectional heat pipe array cogeneration unit with thermoelectric generator (TEG-TPUSUHP). The proposed models have been validated by a series of experiments. Further, the cogeneration unit is then optimized using the proposed models. The results show that the heat loss rate of the TEG-TSUSUHP cogeneration unit is lower than that of the TEG-TPUSUHP cogeneration unit, and the lowest heat loss rate is 15.56%. Moreover, the cogeneration unit designed in this work has good thermal insulation performance with a high thermal storage efficiency of up to 80.53%. Therefore, the U-shape segmented unidirectional heat pipe array cogeneration units with thermoelectric generator (TEG-USUHP) proposed in this paper can promote the development of solar cogeneration units significantly.
|