Physiological role of prions in regulation of Ca2+-transport and neurodegenerative diseases
Literature data on the role of physiological prion in Ca2+-homeostasis regulation, violation promoting prion-induced neurodegenerations, are summarized. The electrophysiological neuronal disorders and synaptic dysfunction which occur during prion diseases and are accompanied by changes in intracell...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Львівський національний університет імені Івана Франка
2013-04-01
|
Series: | Біологічні студії |
Subjects: | |
Online Access: | http://publications.lnu.edu.ua/journals/index.php/biology/article/view/235 |
Summary: | Literature data on the role of physiological prion in Ca2+-homeostasis regulation, violation promoting prion-induced neurodegenerations, are summarized. The electrophysiological neuronal disorders and synaptic dysfunction which occur during prion diseases and are accompanied by changes in intracellular ionized Ca2+ concentration, are described. Short description of Ca2+-transport systems in neurons is presented. Special attention is paid to data obtained in animal models of prion infections and PrP-knocked animals, indicating possible role of PrPc in the process of Ca2+-transport in neurons. In particular, a PrPc mediated participation in functioning of calcium channels due to binding with NR2D-subunit of N-methyl-D-aspartate (NMDA)-receptors of Ca2+-channels, which provides its neuroprotective role, is described. Also, a PrPc participation in the synaptic structure formation and neurotransmission is characterized. The interaction of physiological prion with synapsin-1 and synaptophysin that regulates exo-endoendocytosis synaptic vesicles cycle, was studied. The violation of Ca2+-homeostasis as one of important factors during prion pathologies is characterised. |
---|---|
ISSN: | 1996-4536 2311-0783 |