Soluble Receptor for Advanced Glycation End Products and Its Forms in COVID-19 Patients with and without Diabetes Mellitus: A Pilot Study on Their Role as Disease Biomarkers

The receptor for advanced glycation end products (RAGE), a well-known player of diabetes mellitus (DM)-related morbidities, was supposed to be involved in coronavirus disease-19 (COVID-19), but no data exist about COVID-19, DM, and the soluble RAGE (sRAGE) forms. We quantified total sRAGE and its fo...

Full description

Bibliographic Details
Main Authors: Elena Dozio, Clementina Sitzia, Lara Pistelli, Rosanna Cardani, Roberta Rigolini, Marco Ranucci, Massimiliano M. Corsi Romanelli
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Journal of Clinical Medicine
Subjects:
Online Access:https://www.mdpi.com/2077-0383/9/11/3785
Description
Summary:The receptor for advanced glycation end products (RAGE), a well-known player of diabetes mellitus (DM)-related morbidities, was supposed to be involved in coronavirus disease-19 (COVID-19), but no data exist about COVID-19, DM, and the soluble RAGE (sRAGE) forms. We quantified total sRAGE and its forms, the endogenously secretory esRAGE and the membrane-cleaved cRAGE, in COVID-19 patients with and without DM and in healthy individuals to explore how COVID-19 may affect these molecules and their potential role as biomarkers. Circulating sRAGE and esRAGE were quantified by enzyme-linked-immunosorbent assays. cRAGE was obtained by subtracting esRAGE from total sRAGE. sRAGE, esRAGE, cRAGE, and the cRAGE/esRAGE ratio did not differ between DM and non-DM patients and had the same trend when compared to healthy individuals. Levels of total sRAGE, cRAGE, and cRAGE/esRAGE ratio were upregulated, while esRAGE was downregulated. The lack of difference between DM and non-DM COVID-19 patients in the levels of sRAGE and its forms supports the hypothesis that in COVID-19 the RAGE system is modulated regardless of glycemic control. Identifying how sRAGE and its forms associate to COVID-19 prognosis and the potential of RAGE as a therapeutic target to control inflammatory burden seem of relevance to help treatment of COVID-19.
ISSN:2077-0383