On Selection Criteria for the Tuning Parameter in Robust Divergence
Although robust divergence, such as density power divergence and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-divergence, is helpful for...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/9/1147 |
id |
doaj-52faa746f9414f4195f1c45271c65dfd |
---|---|
record_format |
Article |
spelling |
doaj-52faa746f9414f4195f1c45271c65dfd2021-09-26T00:06:46ZengMDPI AGEntropy1099-43002021-09-01231147114710.3390/e23091147On Selection Criteria for the Tuning Parameter in Robust DivergenceShonosuke Sugasawa0Shouto Yonekura1Center for Spatial Information Science, The University of Tokyo, Chiba 277-8568, JapanNospare Inc., Tokyo 107-0061, JapanAlthough robust divergence, such as density power divergence and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-divergence, is helpful for robust statistical inference in the presence of outliers, the tuning parameter that controls the degree of robustness is chosen in a rule-of-thumb, which may lead to an inefficient inference. We here propose a selection criterion based on an asymptotic approximation of the Hyvarinen score applied to an unnormalized model defined by robust divergence. The proposed selection criterion only requires first and second-order partial derivatives of an assumed density function with respect to observations, which can be easily computed regardless of the number of parameters. We demonstrate the usefulness of the proposed method via numerical studies using normal distributions and regularized linear regression.https://www.mdpi.com/1099-4300/23/9/1147efficiencyHyvarinen scoreoutlierunnormalized model |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shonosuke Sugasawa Shouto Yonekura |
spellingShingle |
Shonosuke Sugasawa Shouto Yonekura On Selection Criteria for the Tuning Parameter in Robust Divergence Entropy efficiency Hyvarinen score outlier unnormalized model |
author_facet |
Shonosuke Sugasawa Shouto Yonekura |
author_sort |
Shonosuke Sugasawa |
title |
On Selection Criteria for the Tuning Parameter in Robust Divergence |
title_short |
On Selection Criteria for the Tuning Parameter in Robust Divergence |
title_full |
On Selection Criteria for the Tuning Parameter in Robust Divergence |
title_fullStr |
On Selection Criteria for the Tuning Parameter in Robust Divergence |
title_full_unstemmed |
On Selection Criteria for the Tuning Parameter in Robust Divergence |
title_sort |
on selection criteria for the tuning parameter in robust divergence |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2021-09-01 |
description |
Although robust divergence, such as density power divergence and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-divergence, is helpful for robust statistical inference in the presence of outliers, the tuning parameter that controls the degree of robustness is chosen in a rule-of-thumb, which may lead to an inefficient inference. We here propose a selection criterion based on an asymptotic approximation of the Hyvarinen score applied to an unnormalized model defined by robust divergence. The proposed selection criterion only requires first and second-order partial derivatives of an assumed density function with respect to observations, which can be easily computed regardless of the number of parameters. We demonstrate the usefulness of the proposed method via numerical studies using normal distributions and regularized linear regression. |
topic |
efficiency Hyvarinen score outlier unnormalized model |
url |
https://www.mdpi.com/1099-4300/23/9/1147 |
work_keys_str_mv |
AT shonosukesugasawa onselectioncriteriaforthetuningparameterinrobustdivergence AT shoutoyonekura onselectioncriteriaforthetuningparameterinrobustdivergence |
_version_ |
1717367021771948032 |