On Selection Criteria for the Tuning Parameter in Robust Divergence

Although robust divergence, such as density power divergence and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-divergence, is helpful for...

Full description

Bibliographic Details
Main Authors: Shonosuke Sugasawa, Shouto Yonekura
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/9/1147
id doaj-52faa746f9414f4195f1c45271c65dfd
record_format Article
spelling doaj-52faa746f9414f4195f1c45271c65dfd2021-09-26T00:06:46ZengMDPI AGEntropy1099-43002021-09-01231147114710.3390/e23091147On Selection Criteria for the Tuning Parameter in Robust DivergenceShonosuke Sugasawa0Shouto Yonekura1Center for Spatial Information Science, The University of Tokyo, Chiba 277-8568, JapanNospare Inc., Tokyo 107-0061, JapanAlthough robust divergence, such as density power divergence and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-divergence, is helpful for robust statistical inference in the presence of outliers, the tuning parameter that controls the degree of robustness is chosen in a rule-of-thumb, which may lead to an inefficient inference. We here propose a selection criterion based on an asymptotic approximation of the Hyvarinen score applied to an unnormalized model defined by robust divergence. The proposed selection criterion only requires first and second-order partial derivatives of an assumed density function with respect to observations, which can be easily computed regardless of the number of parameters. We demonstrate the usefulness of the proposed method via numerical studies using normal distributions and regularized linear regression.https://www.mdpi.com/1099-4300/23/9/1147efficiencyHyvarinen scoreoutlierunnormalized model
collection DOAJ
language English
format Article
sources DOAJ
author Shonosuke Sugasawa
Shouto Yonekura
spellingShingle Shonosuke Sugasawa
Shouto Yonekura
On Selection Criteria for the Tuning Parameter in Robust Divergence
Entropy
efficiency
Hyvarinen score
outlier
unnormalized model
author_facet Shonosuke Sugasawa
Shouto Yonekura
author_sort Shonosuke Sugasawa
title On Selection Criteria for the Tuning Parameter in Robust Divergence
title_short On Selection Criteria for the Tuning Parameter in Robust Divergence
title_full On Selection Criteria for the Tuning Parameter in Robust Divergence
title_fullStr On Selection Criteria for the Tuning Parameter in Robust Divergence
title_full_unstemmed On Selection Criteria for the Tuning Parameter in Robust Divergence
title_sort on selection criteria for the tuning parameter in robust divergence
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2021-09-01
description Although robust divergence, such as density power divergence and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>-divergence, is helpful for robust statistical inference in the presence of outliers, the tuning parameter that controls the degree of robustness is chosen in a rule-of-thumb, which may lead to an inefficient inference. We here propose a selection criterion based on an asymptotic approximation of the Hyvarinen score applied to an unnormalized model defined by robust divergence. The proposed selection criterion only requires first and second-order partial derivatives of an assumed density function with respect to observations, which can be easily computed regardless of the number of parameters. We demonstrate the usefulness of the proposed method via numerical studies using normal distributions and regularized linear regression.
topic efficiency
Hyvarinen score
outlier
unnormalized model
url https://www.mdpi.com/1099-4300/23/9/1147
work_keys_str_mv AT shonosukesugasawa onselectioncriteriaforthetuningparameterinrobustdivergence
AT shoutoyonekura onselectioncriteriaforthetuningparameterinrobustdivergence
_version_ 1717367021771948032