Maximization of Visible Light Communication Capacity Employing Quasi-Linear Preequalization with Peak Power Limitation

We propose quasi-linear preequalization to be used for high speed visible light communication (VLC) system. Compared with zero-forcing preequalization, this kind of preequalization method is more suitable for a real VLC experimental system with peak power limitation. We carry out simulations and exp...

Full description

Bibliographic Details
Main Authors: Yingjun Zhou, Jianyang Shi, Zhixin Wang, Junwen Zhang, Xingxing Huang, Nan Chi
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2016/6902152
Description
Summary:We propose quasi-linear preequalization to be used for high speed visible light communication (VLC) system. Compared with zero-forcing preequalization, this kind of preequalization method is more suitable for a real VLC experimental system with peak power limitation. We carry out simulations and experiments to test the performance of quasi-linear preequalization. With this equalizer, the 3 dB bandwidth of the system can be extended from 17 MHz to 450 MHz. We implement 2.32 Gbit/s phosphorescent white light-emitting diode (LED) VLC transmission over 1 m distance with quasi-linear equalizer, bit and power loading OFDM, differential amplification positive intrinsic negative diode (PIN) receivers, and maximum ratio combining algorithm. To our knowledge, this is the highest transmission data rate based on a phosphorescent white LED VLC system.
ISSN:1024-123X
1563-5147