The Existence of rG Family and tG Family, and Their Geometric Invariants
In the 1990s, physicists constructed two one-parameter families of compact oriented embedded minimal surfaces in flat three-tori by using symmetries of space groups, called the rG family and tG family. The present work studies the existence of the two families via the period lattices. Moreover, we w...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/10/1693 |
Summary: | In the 1990s, physicists constructed two one-parameter families of compact oriented embedded minimal surfaces in flat three-tori by using symmetries of space groups, called the rG family and tG family. The present work studies the existence of the two families via the period lattices. Moreover, we will consider two kinds of geometric invariants for the two families, namely, the Morse index and the signature of a minimal surface. We show that Schwarz P surface, D surface, Schoen’s gyroid, and the Lidinoid belong to a family of minimal surfaces with Morse index 1. |
---|---|
ISSN: | 2227-7390 |