Community-Based Link-Addition Strategies for Mitigating Cascading Failures in Modern Power Systems

The propagation of cascading failures of modern power systems is mainly constrained by the network topology and system parameter. In order to alleviate the cascading failure impacts, it is necessary to adjust the original network topology considering the geographical factors, construction costs and...

Full description

Bibliographic Details
Main Authors: Po Hu, Lily Lee
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/8/2/126
Description
Summary:The propagation of cascading failures of modern power systems is mainly constrained by the network topology and system parameter. In order to alleviate the cascading failure impacts, it is necessary to adjust the original network topology considering the geographical factors, construction costs and requirements of engineering practice. Based on the complex network theory, the power system is modeled as a directed graph. The graph is divided into communities based on the Fast−Newman algorithm, where each community contains at least one generator node. Combined with the islanding characteristics and the node vulnerability, three low-degree-node-based link-addition strategies are proposed to optimize the original topology. A new evaluation index combining with the attack difficulty and the island ratio is proposed to measure the impacts on the network under sequential attacks. From the analysis of the experimental results of three attack scenarios, this study adopts the proposed strategies to enhance the network connectivity and improve the robustness to some extent. It is therefore helpful to guide the power system cascading failure mitigation strategies and network optimization planning.
ISSN:2227-9717