Lattice-Valued Convergence Spaces: Weaker Regularity and p-Regularity
By using some lattice-valued Kowalsky’s dual diagonal conditions, some weaker regularities for Jäger’s generalized stratified L-convergence spaces and those for Boustique et al’s stratified L-convergence spaces are defined and studied. Here, the lattice L is a complete Heyting algebra. Some characte...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/328153 |
Summary: | By using some lattice-valued Kowalsky’s dual diagonal conditions, some weaker regularities for Jäger’s generalized stratified L-convergence spaces and those for Boustique et al’s stratified L-convergence spaces are defined and studied. Here, the lattice L is a complete Heyting algebra. Some characterizations and properties of weaker regularities are presented. For Jäger’s generalized stratified L-convergence spaces, a notion of closures of stratified L-filters is introduced and then a new p-regularity is defined. At last, the relationships between p-regularities and weaker regularities are established. |
---|---|
ISSN: | 1085-3375 1687-0409 |