A novel image encryption algorithm based on fractional order 5D cellular neural network and Fisher-Yates scrambling.

This paper proposes a new chaotic image encryption algorithm. Firstly, an original phased composite chaotic map is used. The comparative study shows that the map cryptographic characteristics are better than the Logistic map, and the map is used as the controller of Fisher-Yates scrambling. Secondly...

Full description

Bibliographic Details
Main Authors: Xingyuan Wang, Yining Su, Chao Luo, Chunpeng Wang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0236015
Description
Summary:This paper proposes a new chaotic image encryption algorithm. Firstly, an original phased composite chaotic map is used. The comparative study shows that the map cryptographic characteristics are better than the Logistic map, and the map is used as the controller of Fisher-Yates scrambling. Secondly, with the higher complexity of the fractional-order five-dimensional cellular neural network system, it is used as a diffusion controller in the encryption process. And mix the secret key, mapping and plaintext, we can obtain the final ciphertext. Finally, the comparative experiments prove that the proposed algorithm improves the encryption efficiency, has good security performance, and can resist common attack methods.
ISSN:1932-6203