Logistic growth models of China pinks, cultivated on seven substrates, as a function of degree days

ABSTRACT: The objective of this study was to characterize the height (H) and leaf number (LN) of China pinks, grown in seven substrates, as a function of degree days, using the logistic growth model. H and LN were measured from 56 plants per substrate, for 392 plants in total. Plants that were grown...

Full description

Bibliographic Details
Main Authors: Marília Milani, Sidinei José Lopes, Rogério Antônio Bellé, Fernanda Alice Antonello Londero Backes
Format: Article
Language:English
Published: Universidade Federal de Santa Maria
Series:Ciência Rural
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782016001101924&lng=en&tlng=en
Description
Summary:ABSTRACT: The objective of this study was to characterize the height (H) and leaf number (LN) of China pinks, grown in seven substrates, as a function of degree days, using the logistic growth model. H and LN were measured from 56 plants per substrate, for 392 plants in total. Plants that were grown on substrates formed of 50% soil with 50% rice husk ash (50% S + 50% RH) and 80% rice husk ash with 20% worm castings (80% RH + 20% W) had the longest vegetative growth period (74d), corresponding to 1317.9ºCd. The logistic growth model, adjusted for H, showed differences in the estimation of maximum expected height (α) between the substrates, with values between 10.47cm for 50% S + 50% RH and 35.75cm for Mecplant(r). When α was estimated as LN, variation was also observed between the different substrates, from approximately 30 leaves on plants growing on 50% S + 50% RH to 34 leaves on the plants growing on the substrate formed of 80% RH + 20% W. Growth of China pinks can be characterized using H or LN in the logistic growth model as a function of degree days, being the provided plants adequately fertilized. The best substrates in terms of maximum height and leaf number were 80% soil + 20% worm castings and Mecplant(r). However, users must recalibrate the model with the estimated parameters before applying it to different growing conditions.
ISSN:1678-4596