Coalitional Game Theoretical Approach for VANET Clustering to Improve SNR

Clustering is considered as the potential approach for network management in vehicular ad hoc network (VANET). The performance of clustering is often assessed based on the stability of the clusters. Hence, most of the clustering methods aim to establish stable clusters. However, besides the stabilit...

Full description

Bibliographic Details
Main Authors: Selo Sulistyo, Sahirul Alam, Ronald Adrian
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Journal of Computer Networks and Communications
Online Access:http://dx.doi.org/10.1155/2019/4573619
Description
Summary:Clustering is considered as the potential approach for network management in vehicular ad hoc network (VANET). The performance of clustering is often assessed based on the stability of the clusters. Hence, most of the clustering methods aim to establish stable clusters. However, besides the stability of cluster, good link quality must be provided, especially when reliable and high-capacity transmission is demanded. Therefore, this paper proposes a clustering method based on coalitional game theory with the purpose to improve the average of vehicle-to-vehicle (V2V) signal-to-noise ratio (SNR) and channel capacity while maintaining the stability of the cluster. In the proposed method, each vehicle attempts to form a cluster with other vehicles according to coalition value. To attain the purpose of clustering, the value of coalition is formulated based on the V2V SNR, connection lifetime, and speed difference between vehicles. In fast-changing network topology, the higher average of SNR can be achieved but the stability of cluster becomes hard to be maintained. Based on the simulation results, SNR improvement can be adjusted in order to balance with the cluster stability by setting the parameters in the proposed method accordingly. Further simulation results show that the proposed method can obtain a higher average of V2V SNR and channel capacity than other relevant methods.
ISSN:2090-7141
2090-715X