On the Propagation of Waves in an Anisotropic Solid with Laser-Induced Atomic Defects

The behavior of plane waves in a linear, elastic anisotropic laser-excited solid has been investigated taking into account the effects of atomic defect generation. It is found that there are four types of dispersive waves in these crystals, namely, a quasilongitudinal (QL-mode), two quasitransverse...

Full description

Bibliographic Details
Main Author: F. Kh. Mirzade
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Advances in Condensed Matter Physics
Online Access:http://dx.doi.org/10.1155/2015/547521
id doaj-521375e0dd78448ab29caa431a9b1ac5
record_format Article
spelling doaj-521375e0dd78448ab29caa431a9b1ac52020-11-24T22:28:09ZengHindawi LimitedAdvances in Condensed Matter Physics1687-81081687-81242015-01-01201510.1155/2015/547521547521On the Propagation of Waves in an Anisotropic Solid with Laser-Induced Atomic DefectsF. Kh. Mirzade0Institute on Laser and Information Technologies, Russian Academy of Sciences, Moscow 140700, RussiaThe behavior of plane waves in a linear, elastic anisotropic laser-excited solid has been investigated taking into account the effects of atomic defect generation. It is found that there are four types of dispersive waves in these crystals, namely, a quasilongitudinal (QL-mode), two quasitransverse (QT-mode), and a quasidefect concentration (N-mode) wave. The complex secular equations for cubic and transversely isotropic crystals are reduced as special cases. It is demonstrated that when waves propagate in one of the planes of transversely isotropic solid having defect concentration field, only one purely quasitransverse wave decouples from the rest of the motion and is not influenced by defect concentration changes. The other waves are coupled and get modified due to presence of defects. When waves propagate along the axis of the solid, only QT- and N-mode are coupled, whereas the two QT-modes get decoupled from the rest of the motion. The phase velocities and attenuation factors of waves have been obtained. Significant effect of defects and anisotropy on wave characteristics is observed in certain ranges of frequency. It is also shown that there is an appreciable variation in case of QL-mode as compared with QT- and N-mode.http://dx.doi.org/10.1155/2015/547521
collection DOAJ
language English
format Article
sources DOAJ
author F. Kh. Mirzade
spellingShingle F. Kh. Mirzade
On the Propagation of Waves in an Anisotropic Solid with Laser-Induced Atomic Defects
Advances in Condensed Matter Physics
author_facet F. Kh. Mirzade
author_sort F. Kh. Mirzade
title On the Propagation of Waves in an Anisotropic Solid with Laser-Induced Atomic Defects
title_short On the Propagation of Waves in an Anisotropic Solid with Laser-Induced Atomic Defects
title_full On the Propagation of Waves in an Anisotropic Solid with Laser-Induced Atomic Defects
title_fullStr On the Propagation of Waves in an Anisotropic Solid with Laser-Induced Atomic Defects
title_full_unstemmed On the Propagation of Waves in an Anisotropic Solid with Laser-Induced Atomic Defects
title_sort on the propagation of waves in an anisotropic solid with laser-induced atomic defects
publisher Hindawi Limited
series Advances in Condensed Matter Physics
issn 1687-8108
1687-8124
publishDate 2015-01-01
description The behavior of plane waves in a linear, elastic anisotropic laser-excited solid has been investigated taking into account the effects of atomic defect generation. It is found that there are four types of dispersive waves in these crystals, namely, a quasilongitudinal (QL-mode), two quasitransverse (QT-mode), and a quasidefect concentration (N-mode) wave. The complex secular equations for cubic and transversely isotropic crystals are reduced as special cases. It is demonstrated that when waves propagate in one of the planes of transversely isotropic solid having defect concentration field, only one purely quasitransverse wave decouples from the rest of the motion and is not influenced by defect concentration changes. The other waves are coupled and get modified due to presence of defects. When waves propagate along the axis of the solid, only QT- and N-mode are coupled, whereas the two QT-modes get decoupled from the rest of the motion. The phase velocities and attenuation factors of waves have been obtained. Significant effect of defects and anisotropy on wave characteristics is observed in certain ranges of frequency. It is also shown that there is an appreciable variation in case of QL-mode as compared with QT- and N-mode.
url http://dx.doi.org/10.1155/2015/547521
work_keys_str_mv AT fkhmirzade onthepropagationofwavesinananisotropicsolidwithlaserinducedatomicdefects
_version_ 1725747578237091840