On a System of Equations of a Non-Newtonian Micropolar Fluid

We investigate a problem for a model of a non-Newtonian micropolar fluid coupled system. The problem has been considered in a bounded, smooth domain of R3 with Dirichlet boundary conditions. The operator stress tensor is given by τ(e(u))=[(ν+ν0M(|e(u)|2))e(u)]. To prove the existence of weak solutio...

Full description

Bibliographic Details
Main Authors: G. M. de Araújo, M. A. F. de Araújo, E. F. L. Lucena
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2015/481754
id doaj-5200da6ced13442ca04b8968e0beb339
record_format Article
spelling doaj-5200da6ced13442ca04b8968e0beb3392020-11-24T20:42:21ZengHindawi LimitedJournal of Applied Mathematics1110-757X1687-00422015-01-01201510.1155/2015/481754481754On a System of Equations of a Non-Newtonian Micropolar FluidG. M. de Araújo0M. A. F. de Araújo1E. F. L. Lucena2Instituto de Ciências Exatas e Naturais, UFPA, Rua Augusto Corrêa s/n, 66075-110 Belém, PA, BrazilDepartamento de Matematica, UFMA, Avenida dos Portugueses 1966, 65080-805 São Luís, MA, BrazilDepartamento de Matemática, UFPA, Rua Leandro Ribeiro s/n, 68600-000 Bragança, PA, BrazilWe investigate a problem for a model of a non-Newtonian micropolar fluid coupled system. The problem has been considered in a bounded, smooth domain of R3 with Dirichlet boundary conditions. The operator stress tensor is given by τ(e(u))=[(ν+ν0M(|e(u)|2))e(u)]. To prove the existence of weak solutions we use the method of Faedo-Galerkin and compactness arguments. Uniqueness and periodicity of solutions are also considered.http://dx.doi.org/10.1155/2015/481754
collection DOAJ
language English
format Article
sources DOAJ
author G. M. de Araújo
M. A. F. de Araújo
E. F. L. Lucena
spellingShingle G. M. de Araújo
M. A. F. de Araújo
E. F. L. Lucena
On a System of Equations of a Non-Newtonian Micropolar Fluid
Journal of Applied Mathematics
author_facet G. M. de Araújo
M. A. F. de Araújo
E. F. L. Lucena
author_sort G. M. de Araújo
title On a System of Equations of a Non-Newtonian Micropolar Fluid
title_short On a System of Equations of a Non-Newtonian Micropolar Fluid
title_full On a System of Equations of a Non-Newtonian Micropolar Fluid
title_fullStr On a System of Equations of a Non-Newtonian Micropolar Fluid
title_full_unstemmed On a System of Equations of a Non-Newtonian Micropolar Fluid
title_sort on a system of equations of a non-newtonian micropolar fluid
publisher Hindawi Limited
series Journal of Applied Mathematics
issn 1110-757X
1687-0042
publishDate 2015-01-01
description We investigate a problem for a model of a non-Newtonian micropolar fluid coupled system. The problem has been considered in a bounded, smooth domain of R3 with Dirichlet boundary conditions. The operator stress tensor is given by τ(e(u))=[(ν+ν0M(|e(u)|2))e(u)]. To prove the existence of weak solutions we use the method of Faedo-Galerkin and compactness arguments. Uniqueness and periodicity of solutions are also considered.
url http://dx.doi.org/10.1155/2015/481754
work_keys_str_mv AT gmdearaujo onasystemofequationsofanonnewtonianmicropolarfluid
AT mafdearaujo onasystemofequationsofanonnewtonianmicropolarfluid
AT efllucena onasystemofequationsofanonnewtonianmicropolarfluid
_version_ 1716822452118487040