WASABI: a dynamic iterative framework for gene regulatory network inference
Abstract Background Inference of gene regulatory networks from gene expression data has been a long-standing and notoriously difficult task in systems biology. Recently, single-cell transcriptomic data have been massively used for gene regulatory network inference, with both successes and limitation...
Main Authors: | Arnaud Bonnaffoux, Ulysse Herbach, Angélique Richard, Anissa Guillemin, Sandrine Gonin-Giraud, Pierre-Alexis Gros, Olivier Gandrillon |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-05-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12859-019-2798-1 |
Similar Items
-
Automated cell cycle and cell size measurements for single-cell gene expression studies
by: Anissa Guillemin, et al.
Published: (2018-02-01) -
Inférence de réseaux de régulation de gènes à partir de données dynamiques multi-échelles
by: Bonnaffoux, Arnaud
Published: (2018) -
Drugs modulating stochastic gene expression affect the erythroid differentiation process.
by: Anissa Guillemin, et al.
Published: (2019-01-01) -
An Active Inference Model of Collective Intelligence
by: Rafael Kaufmann, et al.
Published: (2021-06-01) -
MOOSE: Enabling massively parallel multiphysics simulation
by: Cody J. Permann, et al.
Published: (2020-01-01)