Lack of K-Dependent Oxidative Stress in Cotton Roots Following Coronatine-Induced ROS Accumulation.
Coronatine [COR] is a novel type of plant growth regulator with similarities in structure and property to jasmonate. The objective of this study was to examine the relationship between increased root vitality induced by 10 nM COR and reactive oxygen species scavenging under potassium (K)-replete (2....
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4425454?pdf=render |
id |
doaj-51f2da82c3bc491ba4ff27f1b8d55f31 |
---|---|
record_format |
Article |
spelling |
doaj-51f2da82c3bc491ba4ff27f1b8d55f312020-11-25T02:19:47ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01105e012647610.1371/journal.pone.0126476Lack of K-Dependent Oxidative Stress in Cotton Roots Following Coronatine-Induced ROS Accumulation.Zhiyong ZhangXin ZhangZebing HuSufang WangJinbao ZhangXiaojing WangQinglian WangBaohong ZhangCoronatine [COR] is a novel type of plant growth regulator with similarities in structure and property to jasmonate. The objective of this study was to examine the relationship between increased root vitality induced by 10 nM COR and reactive oxygen species scavenging under potassium (K)-replete (2.5 mM) and K-deficient (0.05 mM) conditions in hydroponic cultured cotton seedlings. K-replete and K-deficient conditions increased root vitality by 2.7- and 3.5-fold, respectively. COR treatment significantly decreased lipid peroxidation in cotton seedlings determined by reduction in MDA levels. These results suggest that COR improves the functioning of both enzymatic and non-enzymatic antioxidant systems. Under K-replete and K-deficient conditions, COR significantly increased the activities of antioxidant enzymes SOD (only for K-repletion), CAT, GPX, and APX comparing; COR also significantly increased DPPH-radical scavenging activity. However, COR led to 1.6- and 1.7-fold increases in superoxide anion (O2•-) concentrations, and 5.7- and 2.1-fold increases in hydrogen peroxide (H2O2) levels, respectively. Additionally, COR intensified the DAB staining of H2O2 and the NBT staining of O2•-. Therefore, our results reveal that COR-induced ROS accumulation stimulates the activities of most antioxidant enzymes but does not induce oxidative stress in cotton roots.http://europepmc.org/articles/PMC4425454?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhiyong Zhang Xin Zhang Zebing Hu Sufang Wang Jinbao Zhang Xiaojing Wang Qinglian Wang Baohong Zhang |
spellingShingle |
Zhiyong Zhang Xin Zhang Zebing Hu Sufang Wang Jinbao Zhang Xiaojing Wang Qinglian Wang Baohong Zhang Lack of K-Dependent Oxidative Stress in Cotton Roots Following Coronatine-Induced ROS Accumulation. PLoS ONE |
author_facet |
Zhiyong Zhang Xin Zhang Zebing Hu Sufang Wang Jinbao Zhang Xiaojing Wang Qinglian Wang Baohong Zhang |
author_sort |
Zhiyong Zhang |
title |
Lack of K-Dependent Oxidative Stress in Cotton Roots Following Coronatine-Induced ROS Accumulation. |
title_short |
Lack of K-Dependent Oxidative Stress in Cotton Roots Following Coronatine-Induced ROS Accumulation. |
title_full |
Lack of K-Dependent Oxidative Stress in Cotton Roots Following Coronatine-Induced ROS Accumulation. |
title_fullStr |
Lack of K-Dependent Oxidative Stress in Cotton Roots Following Coronatine-Induced ROS Accumulation. |
title_full_unstemmed |
Lack of K-Dependent Oxidative Stress in Cotton Roots Following Coronatine-Induced ROS Accumulation. |
title_sort |
lack of k-dependent oxidative stress in cotton roots following coronatine-induced ros accumulation. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2015-01-01 |
description |
Coronatine [COR] is a novel type of plant growth regulator with similarities in structure and property to jasmonate. The objective of this study was to examine the relationship between increased root vitality induced by 10 nM COR and reactive oxygen species scavenging under potassium (K)-replete (2.5 mM) and K-deficient (0.05 mM) conditions in hydroponic cultured cotton seedlings. K-replete and K-deficient conditions increased root vitality by 2.7- and 3.5-fold, respectively. COR treatment significantly decreased lipid peroxidation in cotton seedlings determined by reduction in MDA levels. These results suggest that COR improves the functioning of both enzymatic and non-enzymatic antioxidant systems. Under K-replete and K-deficient conditions, COR significantly increased the activities of antioxidant enzymes SOD (only for K-repletion), CAT, GPX, and APX comparing; COR also significantly increased DPPH-radical scavenging activity. However, COR led to 1.6- and 1.7-fold increases in superoxide anion (O2•-) concentrations, and 5.7- and 2.1-fold increases in hydrogen peroxide (H2O2) levels, respectively. Additionally, COR intensified the DAB staining of H2O2 and the NBT staining of O2•-. Therefore, our results reveal that COR-induced ROS accumulation stimulates the activities of most antioxidant enzymes but does not induce oxidative stress in cotton roots. |
url |
http://europepmc.org/articles/PMC4425454?pdf=render |
work_keys_str_mv |
AT zhiyongzhang lackofkdependentoxidativestressincottonrootsfollowingcoronatineinducedrosaccumulation AT xinzhang lackofkdependentoxidativestressincottonrootsfollowingcoronatineinducedrosaccumulation AT zebinghu lackofkdependentoxidativestressincottonrootsfollowingcoronatineinducedrosaccumulation AT sufangwang lackofkdependentoxidativestressincottonrootsfollowingcoronatineinducedrosaccumulation AT jinbaozhang lackofkdependentoxidativestressincottonrootsfollowingcoronatineinducedrosaccumulation AT xiaojingwang lackofkdependentoxidativestressincottonrootsfollowingcoronatineinducedrosaccumulation AT qinglianwang lackofkdependentoxidativestressincottonrootsfollowingcoronatineinducedrosaccumulation AT baohongzhang lackofkdependentoxidativestressincottonrootsfollowingcoronatineinducedrosaccumulation |
_version_ |
1724874439480311808 |