A Protein in the Yeast <i>Saccharomyces cerevisiae</i> Presents DNA Binding Homology to the p53 Checkpoint Protein and Tumor Suppressor

<i>Saccharomyces cerevisiae</i> does not contain a p53 homolog. Utilizing this yeast as an in vivo test tube model, our aim was to investigate if a yeast protein would show p53 DNA binding homology. Electrophoretic mobility shift analyses revealed the formation of specific DNA-protein co...

Full description

Bibliographic Details
Main Authors: Kanwal Farooqi, Marjan Ghazvini, Leah D. Pride, Louis Mazzella, David White, Ajay Pramanik, Jill Bargonetti, Carol Wood Moore
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Biomolecules
Subjects:
scs
Online Access:https://www.mdpi.com/2218-273X/10/3/417
Description
Summary:<i>Saccharomyces cerevisiae</i> does not contain a p53 homolog. Utilizing this yeast as an in vivo test tube model, our aim was to investigate if a yeast protein would show p53 DNA binding homology. Electrophoretic mobility shift analyses revealed the formation of specific DNA-protein complexes consisting of <i>S. cerevisiae</i> nuclear protein(s) and oligonucleotides containing p53 DNA binding sites. A <i>S. cerevisiae</i> p53 binding site factor (Scp53BSF) bound to a p53 synthetic DNA-consensus sequence (SCS) and a p53 binding-site sequence from the <i>MDM2</i> oncogene. The complexes were of comparable size. Like mammalian p53, the affinity of Scp53BSF for the SCS oligonucleotide was higher than for the MDM2 oligonucleotide. Binding of Scp53BSF to the SCS and MDM2 oligonucleotides was strongly competed by unlabeled oligonucleotides containing mammalian p53 sites, but very little by a mutated site oligonucleotide. Importantly, Scp53BSF-DNA binding activity was significantly induced in extracts from cells with DNA damage. This resulted in dose-dependent coordinated activation of transcription when using p53-binding site reporter constructs. An ancient p53-like DNA binding protein may have been found, and activation of DNA-associated factors to p53 response elements may have functions not yet determined.
ISSN:2218-273X