Contribution of Solid Food to Achieve Individual Nutritional Requirement during a Continuous 438 km Mountain Ultramarathon in Female Athlete

Background: Races and competitions over 100 miles have recently increased. Limited information exists about the effect of multiday continuous endurance exercise on blood glucose control and appropriate intake of food and drink in a female athlete. The present study aimed to examine the variation of...

Full description

Bibliographic Details
Main Authors: Kengo Ishihara, Naho Inamura, Asuka Tani, Daisuke Shima, Ai Kuramochi, Tsutomu Nonaka, Hiroshi Oneda, Yasuyuki Nakamura
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:International Journal of Environmental Research and Public Health
Subjects:
Online Access:https://www.mdpi.com/1660-4601/18/10/5153
Description
Summary:Background: Races and competitions over 100 miles have recently increased. Limited information exists about the effect of multiday continuous endurance exercise on blood glucose control and appropriate intake of food and drink in a female athlete. The present study aimed to examine the variation of blood glucose control and its relationship with nutritional intake and running performance in a professional female athlete during a 155.7 h ultramarathon race with little sleep. Methods: We divided the mountain course of 438 km into 33 segments by timing gates and continuously monitored the participant’s glucose profile throughout the ultramarathon. The running speed in each segment was standardized to the scheduled required time-based on three trial runs. Concurrently, the accompanying runners recorded the participant’s food and drink intake. Nutrient, energy, and water intake were then calculated. Results: Throughout the ultramarathon of 155.7 h, including 16.0 h of rest and sleep, diurnal variation had almost disappeared with the overall increase in blood glucose levels (25–30 mg/dL) compared with that during resting (<i>p</i> < 0.0001). Plasma total protein and triglyceride levels were decreased after the ultramarathon. The intake of protein and fat directly or indirectly contributed to maintaining blood glucose levels and running speed as substrates for gluconeogenesis or as alternative sources of energy when the carbohydrate intake was at a lower recommended limit. The higher amounts of nutrient intakes from solid foods correlated with a higher running pace compared with those from liquids and gels to supply carbohydrates, protein, and fat. Conclusion: Carbohydrate, protein, and fat intake from solid foods contributed to maintaining a fast pace with a steady, mild rise in blood glucose levels compared with liquids and gels when female runner completed a multiday continuous ultramarathon with little sleep.
ISSN:1661-7827
1660-4601