Dynamical Modelling and Robust Control for an Unmanned Aerial Robot Using Hexarotor with 2-DOF Manipulator
The robust control issues in trajectory tracking of an unmanned aerial robot (UAR) are challenging tasks due to strong parametric uncertainties, large nonlinearities, and high couplings in robot dynamics. This paper investigates the dynamical modelling and robust control of an aerial robot using a h...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | International Journal of Aerospace Engineering |
Online Access: | http://dx.doi.org/10.1155/2019/5483073 |
id |
doaj-51b8c74f75564dda9425793e8595633d |
---|---|
record_format |
Article |
spelling |
doaj-51b8c74f75564dda9425793e8595633d2020-11-25T02:37:28ZengHindawi LimitedInternational Journal of Aerospace Engineering1687-59661687-59742019-01-01201910.1155/2019/54830735483073Dynamical Modelling and Robust Control for an Unmanned Aerial Robot Using Hexarotor with 2-DOF ManipulatorLi Ding0Hongtao Wu1College of Mechanical Engineering, Jiangsu University of Technology, No. 1801 Zhongwu Street, Changzhou, ChinaCollege of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Yudao Street, Nanjing, ChinaThe robust control issues in trajectory tracking of an unmanned aerial robot (UAR) are challenging tasks due to strong parametric uncertainties, large nonlinearities, and high couplings in robot dynamics. This paper investigates the dynamical modelling and robust control of an aerial robot using a hexarotor with a 2-degrees-of-freedom (DOF) manipulator in a complex aerial environment. Firstly, the kinematic model and dynamic model of the aerial robot are developed by the Euler-Lagrange method. Afterwards, a linear active disturbance rejection control is designed for the robot to achieve a high-accuracy trajectory tracking goal under heavy lumped disturbances. In this control scheme, the modelling uncertainties and external disturbances are estimated by a linear extended state observer, and the high tracking precision is guaranteed by a proportion-differentiation (PD) feedback control law. Meanwhile, an artificial intelligence algorithm is applied to adjust the control parameters and ensure that the state variables of the robot converge to the references smoothly. Furthermore, it requires no detailed knowledge of the bounds on unknown dynamical parameters. Lastly, numerical simulations and experiments validate the efficiency and advantages of the proposed method.http://dx.doi.org/10.1155/2019/5483073 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Li Ding Hongtao Wu |
spellingShingle |
Li Ding Hongtao Wu Dynamical Modelling and Robust Control for an Unmanned Aerial Robot Using Hexarotor with 2-DOF Manipulator International Journal of Aerospace Engineering |
author_facet |
Li Ding Hongtao Wu |
author_sort |
Li Ding |
title |
Dynamical Modelling and Robust Control for an Unmanned Aerial Robot Using Hexarotor with 2-DOF Manipulator |
title_short |
Dynamical Modelling and Robust Control for an Unmanned Aerial Robot Using Hexarotor with 2-DOF Manipulator |
title_full |
Dynamical Modelling and Robust Control for an Unmanned Aerial Robot Using Hexarotor with 2-DOF Manipulator |
title_fullStr |
Dynamical Modelling and Robust Control for an Unmanned Aerial Robot Using Hexarotor with 2-DOF Manipulator |
title_full_unstemmed |
Dynamical Modelling and Robust Control for an Unmanned Aerial Robot Using Hexarotor with 2-DOF Manipulator |
title_sort |
dynamical modelling and robust control for an unmanned aerial robot using hexarotor with 2-dof manipulator |
publisher |
Hindawi Limited |
series |
International Journal of Aerospace Engineering |
issn |
1687-5966 1687-5974 |
publishDate |
2019-01-01 |
description |
The robust control issues in trajectory tracking of an unmanned aerial robot (UAR) are challenging tasks due to strong parametric uncertainties, large nonlinearities, and high couplings in robot dynamics. This paper investigates the dynamical modelling and robust control of an aerial robot using a hexarotor with a 2-degrees-of-freedom (DOF) manipulator in a complex aerial environment. Firstly, the kinematic model and dynamic model of the aerial robot are developed by the Euler-Lagrange method. Afterwards, a linear active disturbance rejection control is designed for the robot to achieve a high-accuracy trajectory tracking goal under heavy lumped disturbances. In this control scheme, the modelling uncertainties and external disturbances are estimated by a linear extended state observer, and the high tracking precision is guaranteed by a proportion-differentiation (PD) feedback control law. Meanwhile, an artificial intelligence algorithm is applied to adjust the control parameters and ensure that the state variables of the robot converge to the references smoothly. Furthermore, it requires no detailed knowledge of the bounds on unknown dynamical parameters. Lastly, numerical simulations and experiments validate the efficiency and advantages of the proposed method. |
url |
http://dx.doi.org/10.1155/2019/5483073 |
work_keys_str_mv |
AT liding dynamicalmodellingandrobustcontrolforanunmannedaerialrobotusinghexarotorwith2dofmanipulator AT hongtaowu dynamicalmodellingandrobustcontrolforanunmannedaerialrobotusinghexarotorwith2dofmanipulator |
_version_ |
1724795493382356992 |