The art of mabisi production: A traditional fermented milk.

Fermented dairy products can be rich in beneficial microbes and one such product with potential is mabisi. Mabisi is a traditional fermented milk product from Zambia made through spontaneous fermentation of raw milk at ambient temperature using a calabash (gourd), clay pot, plastic or metal containe...

Full description

Bibliographic Details
Main Authors: Himoonga Bernard Moonga, Sijmen E Schoustra, Anita R Linnemann, Elias Kuntashula, John Shindano, Eddy J Smid
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0213541
Description
Summary:Fermented dairy products can be rich in beneficial microbes and one such product with potential is mabisi. Mabisi is a traditional fermented milk product from Zambia made through spontaneous fermentation of raw milk at ambient temperature using a calabash (gourd), clay pot, plastic or metal container. The fermentation takes about 48 hours after which the product is stirred and ready for consumption. This study was aimed at determining the types of production methods of mabisi and identifying the critical production process parameters. A survey was conducted using interviews and observations to determine the existing production practices/technologies and to capture indigenous knowledge on mabisi production in nine provinces of Zambia. We found seven different production methods which we coined; tonga, thick-tonga, illa, barotse, backslopping, cooked and creamy types. Interestingly, the tonga-type mabisi was produced throughout the country by different ethnic groups. The main process parameters were found to be fermentation time and temperature, type of containers, presence/absence of backslopping, agitation, heating and cooling, removal of whey and addition of raw milk. And further found that mabisi is a versatile product consumed with a wide variety of foods. This basic information is crucial for production process optimisation and microbial communities dynamics studies.
ISSN:1932-6203