A Low-Power and In Situ Annealing Technique for the Recovery of Active Devices After Proton Irradiation

In this paper, we study the recovery of onmembrane semiconductor components, such as N-type Field-Effect Transistors (FETs) available in two different channel widths and a Complementary Metal-Oxide-Semiconductor (CMOS) inverter, after the exposure to high dose of proton radiation. Due to the ionizin...

Full description

Bibliographic Details
Main Authors: Francis Laurent A., Sedki Amor, André Nicolas, Kilchytska Valéria, Gérard Pierre, Ali Zeeshan, Udrea Florin, Flandre Denis
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Subjects:
Online Access:https://doi.org/10.1051/epjconf/201817001006
id doaj-51b155501190478caee328787b352a38
record_format Article
spelling doaj-51b155501190478caee328787b352a382021-08-02T20:06:34ZengEDP SciencesEPJ Web of Conferences2100-014X2018-01-011700100610.1051/epjconf/201817001006epjconf_animma2018_01006A Low-Power and In Situ Annealing Technique for the Recovery of Active Devices After Proton IrradiationFrancis Laurent A.Sedki AmorAndré NicolasKilchytska ValériaGérard PierreAli ZeeshanUdrea FlorinFlandre DenisIn this paper, we study the recovery of onmembrane semiconductor components, such as N-type Field-Effect Transistors (FETs) available in two different channel widths and a Complementary Metal-Oxide-Semiconductor (CMOS) inverter, after the exposure to high dose of proton radiation. Due to the ionizing effect, the electrical characteristics of the components established remarkable shifts, where the threshold voltages showed an average shift of -480 mV and -280 mV respectively for 6 μm and 24 μm N-channel transistors, likewise the inversion point of the inverter showed an important shift of -690 mV. The recovery concept is based mainly on a micro-hotplate, fabricated with backside MEMS micromachining structure and a Silicon-On-Insulator (SOI) technology, ensuring rapid, low power and in situ annealing technique, this method proved its reliability in recent works. Annealing the N-channel transistors and the inverter for 16 min with a temperature of the heater up to 385 °C, guaranteed a partial recovery of the semiconductor based components with a maximum power consumption of 66 mW.https://doi.org/10.1051/epjconf/201817001006Field Effect Transistors (FETs)In situ annealingMicro-hotplatesProton radiationRadiation mitigation
collection DOAJ
language English
format Article
sources DOAJ
author Francis Laurent A.
Sedki Amor
André Nicolas
Kilchytska Valéria
Gérard Pierre
Ali Zeeshan
Udrea Florin
Flandre Denis
spellingShingle Francis Laurent A.
Sedki Amor
André Nicolas
Kilchytska Valéria
Gérard Pierre
Ali Zeeshan
Udrea Florin
Flandre Denis
A Low-Power and In Situ Annealing Technique for the Recovery of Active Devices After Proton Irradiation
EPJ Web of Conferences
Field Effect Transistors (FETs)
In situ annealing
Micro-hotplates
Proton radiation
Radiation mitigation
author_facet Francis Laurent A.
Sedki Amor
André Nicolas
Kilchytska Valéria
Gérard Pierre
Ali Zeeshan
Udrea Florin
Flandre Denis
author_sort Francis Laurent A.
title A Low-Power and In Situ Annealing Technique for the Recovery of Active Devices After Proton Irradiation
title_short A Low-Power and In Situ Annealing Technique for the Recovery of Active Devices After Proton Irradiation
title_full A Low-Power and In Situ Annealing Technique for the Recovery of Active Devices After Proton Irradiation
title_fullStr A Low-Power and In Situ Annealing Technique for the Recovery of Active Devices After Proton Irradiation
title_full_unstemmed A Low-Power and In Situ Annealing Technique for the Recovery of Active Devices After Proton Irradiation
title_sort low-power and in situ annealing technique for the recovery of active devices after proton irradiation
publisher EDP Sciences
series EPJ Web of Conferences
issn 2100-014X
publishDate 2018-01-01
description In this paper, we study the recovery of onmembrane semiconductor components, such as N-type Field-Effect Transistors (FETs) available in two different channel widths and a Complementary Metal-Oxide-Semiconductor (CMOS) inverter, after the exposure to high dose of proton radiation. Due to the ionizing effect, the electrical characteristics of the components established remarkable shifts, where the threshold voltages showed an average shift of -480 mV and -280 mV respectively for 6 μm and 24 μm N-channel transistors, likewise the inversion point of the inverter showed an important shift of -690 mV. The recovery concept is based mainly on a micro-hotplate, fabricated with backside MEMS micromachining structure and a Silicon-On-Insulator (SOI) technology, ensuring rapid, low power and in situ annealing technique, this method proved its reliability in recent works. Annealing the N-channel transistors and the inverter for 16 min with a temperature of the heater up to 385 °C, guaranteed a partial recovery of the semiconductor based components with a maximum power consumption of 66 mW.
topic Field Effect Transistors (FETs)
In situ annealing
Micro-hotplates
Proton radiation
Radiation mitigation
url https://doi.org/10.1051/epjconf/201817001006
work_keys_str_mv AT francislaurenta alowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT sedkiamor alowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT andrenicolas alowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT kilchytskavaleria alowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT gerardpierre alowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT alizeeshan alowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT udreaflorin alowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT flandredenis alowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT francislaurenta lowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT sedkiamor lowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT andrenicolas lowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT kilchytskavaleria lowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT gerardpierre lowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT alizeeshan lowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT udreaflorin lowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
AT flandredenis lowpowerandinsituannealingtechniquefortherecoveryofactivedevicesafterprotonirradiation
_version_ 1721227376855089152