On Total H-Irregularity Strength of the Disjoint Union of Graphs
A simple graph G admits an H-covering if every edge in E(G) belongs to at least to one subgraph of G isomorphic to a given graph H. For the subgraph H ⊆ G under a total k-labeling we define the associated H-weight as the sum of labels of all vertices and edges belonging to H. The total k-labeling is...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2020-02-01
|
Series: | Discussiones Mathematicae Graph Theory |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgt.2118 |
Summary: | A simple graph G admits an H-covering if every edge in E(G) belongs to at least to one subgraph of G isomorphic to a given graph H. For the subgraph H ⊆ G under a total k-labeling we define the associated H-weight as the sum of labels of all vertices and edges belonging to H. The total k-labeling is called the H-irregular total k-labeling of a graph G admitting an H-covering if all subgraphs of G isomorphic to H have distinct weights. The total H-irregularity strength of a graph G is the smallest integer k such that G has an H-irregular total k-labeling. |
---|---|
ISSN: | 2083-5892 |