Smoke injection heights from fires in North America: analysis of 5 years of satellite observations

We analyze an extensive record of aerosol smoke plume heights derived from observations over North America for the fire seasons of 2002 and 2004–2007 made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on board the NASA Earth Observing System Terra satellite. We characterize the magn...

Full description

Bibliographic Details
Main Authors: M. Val Martin, J. A. Logan, R. A. Kahn, F.-Y. Leung, D. L. Nelson, D. J. Diner
Format: Article
Language:English
Published: Copernicus Publications 2010-02-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/10/1491/2010/acp-10-1491-2010.pdf
id doaj-51a6f073501349d4873157c1c5ba0ba3
record_format Article
spelling doaj-51a6f073501349d4873157c1c5ba0ba32020-11-24T23:46:16ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242010-02-0110414911510Smoke injection heights from fires in North America: analysis of 5 years of satellite observationsM. Val MartinJ. A. LoganR. A. KahnF.-Y. LeungD. L. NelsonD. J. DinerWe analyze an extensive record of aerosol smoke plume heights derived from observations over North America for the fire seasons of 2002 and 2004–2007 made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on board the NASA Earth Observing System Terra satellite. We characterize the magnitude and variability of smoke plume heights for various biomes, and assess the contribution of local atmospheric and fire conditions to this variability. Plume heights are highly variable, ranging from a few hundred meters up to 5000 m above the terrain at the Terra overpass time (11:00–14:00 local time). The largest plumes are found over the boreal region (median values of ~850 m height, 24 km length and 940 m thickness), whereas the smallest plumes are found over cropland and grassland fires in the contiguous US (median values of ~530 m height, 12 km length and 550–640 m thickness). The analysis of plume heights in combination with assimilated meteorological observations from the NASA Goddard Earth Observing System indicates that a significant fraction (4–12%) of plumes from fires are injected above the boundary layer (BL), consistent with earlier results for Alaska and the Yukon Territories during summer 2004. Most of the plumes located above the BL (>83%) are trapped within stable atmospheric layers. We find a correlation between plume height and the MODerate resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) thermal anomalies associated with each plume. Smoke plumes located in the free troposphere (FT) exhibit larger FRP values (1620–1640 MW) than those remaining within the BL (174–465 MW). Plumes located in the FT without a stable layer reach higher altitudes and are more spread-out vertically than those associated with distinct stable layers (2490 m height and 2790 m thickness versus 1880 m height and 1800 m thickness). The MISR plume climatology exhibits a well-defined seasonal cycle of plume heights in boreal and temperate biomes, with greater heights during June–July. MODIS FRP measurements indicate that larger summertime heights are the result of higher fire intensity, likely due to more severe fire weather during these months. This work demonstrates the significant effect of fire intensity and atmospheric structure on the ultimate rise of fire emissions, and underlines the importance of considering such physical processes in modeling smoke dispersion. http://www.atmos-chem-phys.net/10/1491/2010/acp-10-1491-2010.pdf
collection DOAJ
language English
format Article
sources DOAJ
author M. Val Martin
J. A. Logan
R. A. Kahn
F.-Y. Leung
D. L. Nelson
D. J. Diner
spellingShingle M. Val Martin
J. A. Logan
R. A. Kahn
F.-Y. Leung
D. L. Nelson
D. J. Diner
Smoke injection heights from fires in North America: analysis of 5 years of satellite observations
Atmospheric Chemistry and Physics
author_facet M. Val Martin
J. A. Logan
R. A. Kahn
F.-Y. Leung
D. L. Nelson
D. J. Diner
author_sort M. Val Martin
title Smoke injection heights from fires in North America: analysis of 5 years of satellite observations
title_short Smoke injection heights from fires in North America: analysis of 5 years of satellite observations
title_full Smoke injection heights from fires in North America: analysis of 5 years of satellite observations
title_fullStr Smoke injection heights from fires in North America: analysis of 5 years of satellite observations
title_full_unstemmed Smoke injection heights from fires in North America: analysis of 5 years of satellite observations
title_sort smoke injection heights from fires in north america: analysis of 5 years of satellite observations
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2010-02-01
description We analyze an extensive record of aerosol smoke plume heights derived from observations over North America for the fire seasons of 2002 and 2004–2007 made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on board the NASA Earth Observing System Terra satellite. We characterize the magnitude and variability of smoke plume heights for various biomes, and assess the contribution of local atmospheric and fire conditions to this variability. Plume heights are highly variable, ranging from a few hundred meters up to 5000 m above the terrain at the Terra overpass time (11:00–14:00 local time). The largest plumes are found over the boreal region (median values of ~850 m height, 24 km length and 940 m thickness), whereas the smallest plumes are found over cropland and grassland fires in the contiguous US (median values of ~530 m height, 12 km length and 550–640 m thickness). The analysis of plume heights in combination with assimilated meteorological observations from the NASA Goddard Earth Observing System indicates that a significant fraction (4–12%) of plumes from fires are injected above the boundary layer (BL), consistent with earlier results for Alaska and the Yukon Territories during summer 2004. Most of the plumes located above the BL (>83%) are trapped within stable atmospheric layers. We find a correlation between plume height and the MODerate resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) thermal anomalies associated with each plume. Smoke plumes located in the free troposphere (FT) exhibit larger FRP values (1620–1640 MW) than those remaining within the BL (174–465 MW). Plumes located in the FT without a stable layer reach higher altitudes and are more spread-out vertically than those associated with distinct stable layers (2490 m height and 2790 m thickness versus 1880 m height and 1800 m thickness). The MISR plume climatology exhibits a well-defined seasonal cycle of plume heights in boreal and temperate biomes, with greater heights during June–July. MODIS FRP measurements indicate that larger summertime heights are the result of higher fire intensity, likely due to more severe fire weather during these months. This work demonstrates the significant effect of fire intensity and atmospheric structure on the ultimate rise of fire emissions, and underlines the importance of considering such physical processes in modeling smoke dispersion.
url http://www.atmos-chem-phys.net/10/1491/2010/acp-10-1491-2010.pdf
work_keys_str_mv AT mvalmartin smokeinjectionheightsfromfiresinnorthamericaanalysisof5yearsofsatelliteobservations
AT jalogan smokeinjectionheightsfromfiresinnorthamericaanalysisof5yearsofsatelliteobservations
AT rakahn smokeinjectionheightsfromfiresinnorthamericaanalysisof5yearsofsatelliteobservations
AT fyleung smokeinjectionheightsfromfiresinnorthamericaanalysisof5yearsofsatelliteobservations
AT dlnelson smokeinjectionheightsfromfiresinnorthamericaanalysisof5yearsofsatelliteobservations
AT djdiner smokeinjectionheightsfromfiresinnorthamericaanalysisof5yearsofsatelliteobservations
_version_ 1725493907982123008