Summary: | Irrigation water is well known as potential source of pathogens in fresh produce. However, its role in transferring antibiotic resistance determinants is less well investigated. Therefore, we analyzed the contribution of surface and tap water to the resistome of overhead-irrigated chive plants. Field-grown chive was irrigated with either surface water (R-system) or tap water (D-system), from planting to harvest. Water along the two irrigation chains as well as the respective plants were repeatedly sampled and screened for 264 antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), using high-capacity qPCR. Differentially abundant (DA) ARGs were determined by comparing the two systems. On R-chive, β-lactam ARGs, multidrug-resistance (MDR) determinants, and MGEs were most abundant, while D-chive featured DA ARGs from the vancomycin class. Diversity and number of DA ARGs was the highest on young chives, strongly diminished at harvest, and increased again at the end of shelf life. Most ARGs highly enriched on R- compared to D-chive were also enriched in R- compared to D-sprinkler water, indicating that water played a major role in ARG enrichment. Of note, <i>bla</i><sub>KPC</sub> was detected at high levels in surface water and chive. We conclude that water quality significantly affects the resistome of the irrigated produce.
|