Experimental test of the Greenberger–Horne–Zeilinger-type paradoxes in and beyond graph states

Abstract The Greenberger–Horne–Zeilinger (GHZ) paradox is an exquisite no-go theorem that shows the sharp contradiction between classical theory and quantum mechanics by ruling out any local realistic description of quantum theory. The investigation of GHZ-type paradoxes has been carried out in a va...

Full description

Bibliographic Details
Main Authors: Zheng-Hao Liu, Jie Zhou, Hui-Xian Meng, Mu Yang, Qiang Li, Yu Meng, Hong-Yi Su, Jing-Ling Chen, Kai Sun, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo
Format: Article
Language:English
Published: Nature Publishing Group 2021-04-01
Series:npj Quantum Information
Online Access:https://doi.org/10.1038/s41534-021-00397-z
Description
Summary:Abstract The Greenberger–Horne–Zeilinger (GHZ) paradox is an exquisite no-go theorem that shows the sharp contradiction between classical theory and quantum mechanics by ruling out any local realistic description of quantum theory. The investigation of GHZ-type paradoxes has been carried out in a variety of systems and led to fruitful discoveries. However, its range of applicability still remains unknown and a unified construction is yet to be discovered. In this work, we present a unified construction of GHZ-type paradoxes for graph states, and show that the existence of GHZ-type paradox is not limited to graph states. The results have important applications in quantum state verification for graph states, entanglement detection, and construction of GHZ-type steering paradox for mixed states. We perform a photonic experiment to test the GHZ-type paradoxes via measuring the success probability of their corresponding perfect Hardy-type paradoxes, and demonstrate the proposed applications. Our work deepens the comprehension of quantum paradoxes in quantum foundations, and may have applications in a broad spectrum of quantum information tasks.
ISSN:2056-6387