Borel-Laplace summation method used as time integration scheme
A time integration method for the resolution of ordinary and partial differential equations is proposed. The method consists in computing a formal solution as a (eventually divergent) time series. Next, the Borel resummation method is applied to deduce an (sectorial) an...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2014-09-01
|
Series: | ESAIM: Proceedings and Surveys |
Online Access: | http://dx.doi.org/10.1051/proc/201445033 |
id |
doaj-51485a360ff448acb7fe0d1601be6d16 |
---|---|
record_format |
Article |
spelling |
doaj-51485a360ff448acb7fe0d1601be6d162021-07-15T14:07:21ZengEDP SciencesESAIM: Proceedings and Surveys2267-30592014-09-014531832710.1051/proc/201445033proc144533Borel-Laplace summation method used as time integration schemeDeeb Ahmad0Hamdouni Aziz1Liberge Erwan2Razafindralandy Dina3Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), Université de La RochelleLaboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), Université de La RochelleLaboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), Université de La RochelleLaboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), Université de La RochelleA time integration method for the resolution of ordinary and partial differential equations is proposed. The method consists in computing a formal solution as a (eventually divergent) time series. Next, the Borel resummation method is applied to deduce an (sectorial) analytical solution. The speed and spectral properties of the scheme are analyzed through some examples. Applications to fluid mechanics are presented.http://dx.doi.org/10.1051/proc/201445033 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Deeb Ahmad Hamdouni Aziz Liberge Erwan Razafindralandy Dina |
spellingShingle |
Deeb Ahmad Hamdouni Aziz Liberge Erwan Razafindralandy Dina Borel-Laplace summation method used as time integration scheme ESAIM: Proceedings and Surveys |
author_facet |
Deeb Ahmad Hamdouni Aziz Liberge Erwan Razafindralandy Dina |
author_sort |
Deeb Ahmad |
title |
Borel-Laplace summation method used as time integration scheme |
title_short |
Borel-Laplace summation method used as time integration scheme |
title_full |
Borel-Laplace summation method used as time integration scheme |
title_fullStr |
Borel-Laplace summation method used as time integration scheme |
title_full_unstemmed |
Borel-Laplace summation method used as time integration scheme |
title_sort |
borel-laplace summation method used as time integration scheme |
publisher |
EDP Sciences |
series |
ESAIM: Proceedings and Surveys |
issn |
2267-3059 |
publishDate |
2014-09-01 |
description |
A time integration method for the resolution of ordinary and partial differential
equations is proposed. The method consists in computing a formal solution as a (eventually
divergent) time series. Next, the Borel resummation method is applied to deduce an
(sectorial) analytical solution. The speed and spectral properties of the scheme are
analyzed through some examples. Applications to fluid mechanics are presented. |
url |
http://dx.doi.org/10.1051/proc/201445033 |
work_keys_str_mv |
AT deebahmad borellaplacesummationmethodusedastimeintegrationscheme AT hamdouniaziz borellaplacesummationmethodusedastimeintegrationscheme AT libergeerwan borellaplacesummationmethodusedastimeintegrationscheme AT razafindralandydina borellaplacesummationmethodusedastimeintegrationscheme |
_version_ |
1721300240742481920 |