Borel-Laplace summation method used as time integration scheme

A time integration method for the resolution of ordinary and partial differential equations is proposed. The method consists in computing a formal solution as a (eventually divergent) time series. Next, the Borel resummation method is applied to deduce an (sectorial) an...

Full description

Bibliographic Details
Main Authors: Deeb Ahmad, Hamdouni Aziz, Liberge Erwan, Razafindralandy Dina
Format: Article
Language:English
Published: EDP Sciences 2014-09-01
Series:ESAIM: Proceedings and Surveys
Online Access:http://dx.doi.org/10.1051/proc/201445033
id doaj-51485a360ff448acb7fe0d1601be6d16
record_format Article
spelling doaj-51485a360ff448acb7fe0d1601be6d162021-07-15T14:07:21ZengEDP SciencesESAIM: Proceedings and Surveys2267-30592014-09-014531832710.1051/proc/201445033proc144533Borel-Laplace summation method used as time integration schemeDeeb Ahmad0Hamdouni Aziz1Liberge Erwan2Razafindralandy Dina3Laboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), Université de La RochelleLaboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), Université de La RochelleLaboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), Université de La RochelleLaboratoire des Sciences de l’Ingénieur pour l’Environnement (LaSIE), Université de La RochelleA time integration method for the resolution of ordinary and partial differential equations is proposed. The method consists in computing a formal solution as a (eventually divergent) time series. Next, the Borel resummation method is applied to deduce an (sectorial) analytical solution. The speed and spectral properties of the scheme are analyzed through some examples. Applications to fluid mechanics are presented.http://dx.doi.org/10.1051/proc/201445033
collection DOAJ
language English
format Article
sources DOAJ
author Deeb Ahmad
Hamdouni Aziz
Liberge Erwan
Razafindralandy Dina
spellingShingle Deeb Ahmad
Hamdouni Aziz
Liberge Erwan
Razafindralandy Dina
Borel-Laplace summation method used as time integration scheme
ESAIM: Proceedings and Surveys
author_facet Deeb Ahmad
Hamdouni Aziz
Liberge Erwan
Razafindralandy Dina
author_sort Deeb Ahmad
title Borel-Laplace summation method used as time integration scheme
title_short Borel-Laplace summation method used as time integration scheme
title_full Borel-Laplace summation method used as time integration scheme
title_fullStr Borel-Laplace summation method used as time integration scheme
title_full_unstemmed Borel-Laplace summation method used as time integration scheme
title_sort borel-laplace summation method used as time integration scheme
publisher EDP Sciences
series ESAIM: Proceedings and Surveys
issn 2267-3059
publishDate 2014-09-01
description A time integration method for the resolution of ordinary and partial differential equations is proposed. The method consists in computing a formal solution as a (eventually divergent) time series. Next, the Borel resummation method is applied to deduce an (sectorial) analytical solution. The speed and spectral properties of the scheme are analyzed through some examples. Applications to fluid mechanics are presented.
url http://dx.doi.org/10.1051/proc/201445033
work_keys_str_mv AT deebahmad borellaplacesummationmethodusedastimeintegrationscheme
AT hamdouniaziz borellaplacesummationmethodusedastimeintegrationscheme
AT libergeerwan borellaplacesummationmethodusedastimeintegrationscheme
AT razafindralandydina borellaplacesummationmethodusedastimeintegrationscheme
_version_ 1721300240742481920