Elevated uptake of plasma macromolecules by regions of arterial wall predisposed to plaque instability in a mouse model.

Atherosclerosis may be triggered by an elevated net transport of lipid-carrying macromolecules from plasma into the arterial wall. We hypothesised that whether lesions are of the thin-cap fibroatheroma (TCFA) type or are less fatty and more fibrous depends on the degree of elevation of transport, wi...

Full description

Bibliographic Details
Main Authors: Zahra Mohri, Ethan M Rowland, Lindsey A Clarke, Amalia De Luca, Véronique Peiffer, Rob Krams, Spencer J Sherwin, Peter D Weinberg
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4274101?pdf=render
id doaj-51366258db3a47c18417443a8226cbc3
record_format Article
spelling doaj-51366258db3a47c18417443a8226cbc32020-11-25T01:22:07ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-01912e11572810.1371/journal.pone.0115728Elevated uptake of plasma macromolecules by regions of arterial wall predisposed to plaque instability in a mouse model.Zahra MohriEthan M RowlandLindsey A ClarkeAmalia De LucaVéronique PeifferRob KramsSpencer J SherwinPeter D WeinbergAtherosclerosis may be triggered by an elevated net transport of lipid-carrying macromolecules from plasma into the arterial wall. We hypothesised that whether lesions are of the thin-cap fibroatheroma (TCFA) type or are less fatty and more fibrous depends on the degree of elevation of transport, with greater uptake leading to the former. We further hypothesised that the degree of elevation can depend on haemodynamic wall shear stress characteristics and nitric oxide synthesis. Placing a tapered cuff around the carotid artery of apolipoprotein E -/- mice modifies patterns of shear stress and eNOS expression, and triggers lesion development at the upstream and downstream cuff margins; upstream but not downstream lesions resemble the TCFA. We measured wall uptake of a macromolecular tracer in the carotid artery of C57bl/6 mice after cuff placement. Uptake was elevated in the regions that develop lesions in hyperlipidaemic mice and was significantly more elevated where plaques of the TCFA type develop. Computational simulations and effects of reversing the cuff orientation indicated a role for solid as well as fluid mechanical stresses. Inhibiting NO synthesis abolished the difference in uptake between the upstream and downstream sites. The data support the hypothesis that excessively elevated wall uptake of plasma macromolecules initiates the development of the TCFA, suggest that such uptake can result from solid and fluid mechanical stresses, and are consistent with a role for NO synthesis. Modification of wall transport properties might form the basis of novel methods for reducing plaque rupture.http://europepmc.org/articles/PMC4274101?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Zahra Mohri
Ethan M Rowland
Lindsey A Clarke
Amalia De Luca
Véronique Peiffer
Rob Krams
Spencer J Sherwin
Peter D Weinberg
spellingShingle Zahra Mohri
Ethan M Rowland
Lindsey A Clarke
Amalia De Luca
Véronique Peiffer
Rob Krams
Spencer J Sherwin
Peter D Weinberg
Elevated uptake of plasma macromolecules by regions of arterial wall predisposed to plaque instability in a mouse model.
PLoS ONE
author_facet Zahra Mohri
Ethan M Rowland
Lindsey A Clarke
Amalia De Luca
Véronique Peiffer
Rob Krams
Spencer J Sherwin
Peter D Weinberg
author_sort Zahra Mohri
title Elevated uptake of plasma macromolecules by regions of arterial wall predisposed to plaque instability in a mouse model.
title_short Elevated uptake of plasma macromolecules by regions of arterial wall predisposed to plaque instability in a mouse model.
title_full Elevated uptake of plasma macromolecules by regions of arterial wall predisposed to plaque instability in a mouse model.
title_fullStr Elevated uptake of plasma macromolecules by regions of arterial wall predisposed to plaque instability in a mouse model.
title_full_unstemmed Elevated uptake of plasma macromolecules by regions of arterial wall predisposed to plaque instability in a mouse model.
title_sort elevated uptake of plasma macromolecules by regions of arterial wall predisposed to plaque instability in a mouse model.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2014-01-01
description Atherosclerosis may be triggered by an elevated net transport of lipid-carrying macromolecules from plasma into the arterial wall. We hypothesised that whether lesions are of the thin-cap fibroatheroma (TCFA) type or are less fatty and more fibrous depends on the degree of elevation of transport, with greater uptake leading to the former. We further hypothesised that the degree of elevation can depend on haemodynamic wall shear stress characteristics and nitric oxide synthesis. Placing a tapered cuff around the carotid artery of apolipoprotein E -/- mice modifies patterns of shear stress and eNOS expression, and triggers lesion development at the upstream and downstream cuff margins; upstream but not downstream lesions resemble the TCFA. We measured wall uptake of a macromolecular tracer in the carotid artery of C57bl/6 mice after cuff placement. Uptake was elevated in the regions that develop lesions in hyperlipidaemic mice and was significantly more elevated where plaques of the TCFA type develop. Computational simulations and effects of reversing the cuff orientation indicated a role for solid as well as fluid mechanical stresses. Inhibiting NO synthesis abolished the difference in uptake between the upstream and downstream sites. The data support the hypothesis that excessively elevated wall uptake of plasma macromolecules initiates the development of the TCFA, suggest that such uptake can result from solid and fluid mechanical stresses, and are consistent with a role for NO synthesis. Modification of wall transport properties might form the basis of novel methods for reducing plaque rupture.
url http://europepmc.org/articles/PMC4274101?pdf=render
work_keys_str_mv AT zahramohri elevateduptakeofplasmamacromoleculesbyregionsofarterialwallpredisposedtoplaqueinstabilityinamousemodel
AT ethanmrowland elevateduptakeofplasmamacromoleculesbyregionsofarterialwallpredisposedtoplaqueinstabilityinamousemodel
AT lindseyaclarke elevateduptakeofplasmamacromoleculesbyregionsofarterialwallpredisposedtoplaqueinstabilityinamousemodel
AT amaliadeluca elevateduptakeofplasmamacromoleculesbyregionsofarterialwallpredisposedtoplaqueinstabilityinamousemodel
AT veroniquepeiffer elevateduptakeofplasmamacromoleculesbyregionsofarterialwallpredisposedtoplaqueinstabilityinamousemodel
AT robkrams elevateduptakeofplasmamacromoleculesbyregionsofarterialwallpredisposedtoplaqueinstabilityinamousemodel
AT spencerjsherwin elevateduptakeofplasmamacromoleculesbyregionsofarterialwallpredisposedtoplaqueinstabilityinamousemodel
AT peterdweinberg elevateduptakeofplasmamacromoleculesbyregionsofarterialwallpredisposedtoplaqueinstabilityinamousemodel
_version_ 1725127678906859520