Summary: | Sum and intersection of linear subspaces in a vector space over a field are fundamental operations in linear algebra. The purpose of this survey paper is to give a comprehensive approach to the sums and intersections of two linear subspaces and their orthogonal complements in the finite-dimensional complex vector space. We shall establish a variety of closed-form formulas for representing the direct sum decompositions of the m-dimensional complex column vector space m with respect to a pair of given linear subspaces and 𝒩 and their operations, and use them to derive a huge amount of decomposition identities for matrix expressions composed by a pair of orthogonal projectors onto the linear subspaces. As applications, we give matrix representation for the orthogonal projectors onto the intersections of a pair of linear subspaces using various matrix decomposition identities and Moore–Penrose inverses; necessary and su˚cient conditions for two linear subspaces to be in generic position; characterization of the commutativity of a pair of orthogonal projectors; necessary and su˚cient conditions for equalities and inequalities for a pair of subspaces to hold; equalities and inequalities for norms of a pair of orthogonal projectors and their operations; as well as a collection of characterizations of EP-matrix.
|