Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method

The interior elastic transmission eigenvalue problem, arising from the inverse scattering theory of non-homogeneous elastic media, is nonlinear, non-self-adjoint and of fourth order. This paper proposes a numerical method to compute real elastic transmission eigenvalues. To avoid treating the non-se...

Full description

Bibliographic Details
Main Authors: Xia Ji, Peijun Li, Jiguang Sun
Format: Article
Language:English
Published: Elsevier 2020-02-01
Series:Results in Applied Mathematics
Online Access:http://www.sciencedirect.com/science/article/pii/S2590037419300834
id doaj-50fcd2bd46c94b5db070941d3f32a449
record_format Article
spelling doaj-50fcd2bd46c94b5db070941d3f32a4492020-11-25T02:52:05ZengElsevierResults in Applied Mathematics2590-03742020-02-015Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant methodXia Ji0Peijun Li1Jiguang Sun2LSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 100190, ChinaDepartment of Mathematics, Purdue University, West Lafayette, IN 47907, USADepartment of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA; Corresponding author.The interior elastic transmission eigenvalue problem, arising from the inverse scattering theory of non-homogeneous elastic media, is nonlinear, non-self-adjoint and of fourth order. This paper proposes a numerical method to compute real elastic transmission eigenvalues. To avoid treating the non-self-adjoint operator, an auxiliary nonlinear function is constructed. The values of the function are generalized eigenvalues of a series of self-adjoint fourth order problems. The roots of the function are the transmission eigenvalues. The self-adjoint fourth order problems are computed using the H2-conforming Argyris element. The secant method is employed to search the roots of the nonlinear function. The convergence of the proposed method is proved. Keywords: Elastic transmission eigenvalue problem, Non-linear eigenvalue problem, Finite elements methodhttp://www.sciencedirect.com/science/article/pii/S2590037419300834
collection DOAJ
language English
format Article
sources DOAJ
author Xia Ji
Peijun Li
Jiguang Sun
spellingShingle Xia Ji
Peijun Li
Jiguang Sun
Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method
Results in Applied Mathematics
author_facet Xia Ji
Peijun Li
Jiguang Sun
author_sort Xia Ji
title Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method
title_short Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method
title_full Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method
title_fullStr Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method
title_full_unstemmed Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method
title_sort computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method
publisher Elsevier
series Results in Applied Mathematics
issn 2590-0374
publishDate 2020-02-01
description The interior elastic transmission eigenvalue problem, arising from the inverse scattering theory of non-homogeneous elastic media, is nonlinear, non-self-adjoint and of fourth order. This paper proposes a numerical method to compute real elastic transmission eigenvalues. To avoid treating the non-self-adjoint operator, an auxiliary nonlinear function is constructed. The values of the function are generalized eigenvalues of a series of self-adjoint fourth order problems. The roots of the function are the transmission eigenvalues. The self-adjoint fourth order problems are computed using the H2-conforming Argyris element. The secant method is employed to search the roots of the nonlinear function. The convergence of the proposed method is proved. Keywords: Elastic transmission eigenvalue problem, Non-linear eigenvalue problem, Finite elements method
url http://www.sciencedirect.com/science/article/pii/S2590037419300834
work_keys_str_mv AT xiaji computationofinteriorelastictransmissioneigenvaluesusingaconformingfiniteelementandthesecantmethod
AT peijunli computationofinteriorelastictransmissioneigenvaluesusingaconformingfiniteelementandthesecantmethod
AT jiguangsun computationofinteriorelastictransmissioneigenvaluesusingaconformingfiniteelementandthesecantmethod
_version_ 1724731437588938752