Fixed point sets of maps homotopic to a given map
<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-46052-i1.gif"/></inline-formula> be a self-map of a compact, connected polyhedron and <inline-formula><graphic file="1687-1812-2006-46052-i2.gif"/></inline-formula> a closed...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2006-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2006/46052 |
id |
doaj-50f601fd504043b2bb1ac24dade5f214 |
---|---|
record_format |
Article |
spelling |
doaj-50f601fd504043b2bb1ac24dade5f2142020-11-24T21:56:13ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122006-01-012006146052Fixed point sets of maps homotopic to a given mapSoderlund Christina L<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-46052-i1.gif"/></inline-formula> be a self-map of a compact, connected polyhedron and <inline-formula><graphic file="1687-1812-2006-46052-i2.gif"/></inline-formula> a closed subset. We examine necessary and sufficient conditions for realizing <inline-formula><graphic file="1687-1812-2006-46052-i3.gif"/></inline-formula> as the fixed point set of a map homotopic to <inline-formula><graphic file="1687-1812-2006-46052-i4.gif"/></inline-formula>. For the case where <inline-formula><graphic file="1687-1812-2006-46052-i5.gif"/></inline-formula> is a subpolyhedron, two necessary conditions were presented by Schirmer in 1990 and were proven sufficient under appropriate additional hypotheses. We will show that the same conditions remain sufficient when <inline-formula><graphic file="1687-1812-2006-46052-i6.gif"/></inline-formula> is only assumed to be a locally contractible subset of <inline-formula><graphic file="1687-1812-2006-46052-i7.gif"/></inline-formula>. The relative form of the realization problem has also been solved for <inline-formula><graphic file="1687-1812-2006-46052-i8.gif"/></inline-formula> a subpolyhedron of <inline-formula><graphic file="1687-1812-2006-46052-i9.gif"/></inline-formula>. We also extend these results to the case where <inline-formula><graphic file="1687-1812-2006-46052-i10.gif"/></inline-formula> is a locally contractible subset.</p> http://www.fixedpointtheoryandapplications.com/content/2006/46052 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Soderlund Christina L |
spellingShingle |
Soderlund Christina L Fixed point sets of maps homotopic to a given map Fixed Point Theory and Applications |
author_facet |
Soderlund Christina L |
author_sort |
Soderlund Christina L |
title |
Fixed point sets of maps homotopic to a given map |
title_short |
Fixed point sets of maps homotopic to a given map |
title_full |
Fixed point sets of maps homotopic to a given map |
title_fullStr |
Fixed point sets of maps homotopic to a given map |
title_full_unstemmed |
Fixed point sets of maps homotopic to a given map |
title_sort |
fixed point sets of maps homotopic to a given map |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2006-01-01 |
description |
<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-46052-i1.gif"/></inline-formula> be a self-map of a compact, connected polyhedron and <inline-formula><graphic file="1687-1812-2006-46052-i2.gif"/></inline-formula> a closed subset. We examine necessary and sufficient conditions for realizing <inline-formula><graphic file="1687-1812-2006-46052-i3.gif"/></inline-formula> as the fixed point set of a map homotopic to <inline-formula><graphic file="1687-1812-2006-46052-i4.gif"/></inline-formula>. For the case where <inline-formula><graphic file="1687-1812-2006-46052-i5.gif"/></inline-formula> is a subpolyhedron, two necessary conditions were presented by Schirmer in 1990 and were proven sufficient under appropriate additional hypotheses. We will show that the same conditions remain sufficient when <inline-formula><graphic file="1687-1812-2006-46052-i6.gif"/></inline-formula> is only assumed to be a locally contractible subset of <inline-formula><graphic file="1687-1812-2006-46052-i7.gif"/></inline-formula>. The relative form of the realization problem has also been solved for <inline-formula><graphic file="1687-1812-2006-46052-i8.gif"/></inline-formula> a subpolyhedron of <inline-formula><graphic file="1687-1812-2006-46052-i9.gif"/></inline-formula>. We also extend these results to the case where <inline-formula><graphic file="1687-1812-2006-46052-i10.gif"/></inline-formula> is a locally contractible subset.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2006/46052 |
work_keys_str_mv |
AT soderlundchristinal fixedpointsetsofmapshomotopictoagivenmap |
_version_ |
1716622589288251392 |