A benchmark for statistical microarray data analysis that preserves actual biological and technical variance

<p>Abstract</p> <p>Background</p> <p>Recent reanalysis of spike-in datasets underscored the need for new and more accurate benchmark datasets for statistical microarray analysis. We present here a fresh method using biologically-relevant data to evaluate the performance...

Full description

Bibliographic Details
Main Authors: Gaigneaux Anthoula, Bareke Eric, Pierre Michael, Berger Fabrice, De Meulder Bertrand, De Hertogh Benoît, Depiereux Eric
Format: Article
Language:English
Published: BMC 2010-01-01
Series:BMC Bioinformatics
Online Access:http://www.biomedcentral.com/1471-2105/11/17
id doaj-50f29fcce59b49e7af0f8b0ed4b1af65
record_format Article
spelling doaj-50f29fcce59b49e7af0f8b0ed4b1af652020-11-25T00:26:47ZengBMCBMC Bioinformatics1471-21052010-01-011111710.1186/1471-2105-11-17A benchmark for statistical microarray data analysis that preserves actual biological and technical varianceGaigneaux AnthoulaBareke EricPierre MichaelBerger FabriceDe Meulder BertrandDe Hertogh BenoîtDepiereux Eric<p>Abstract</p> <p>Background</p> <p>Recent reanalysis of spike-in datasets underscored the need for new and more accurate benchmark datasets for statistical microarray analysis. We present here a fresh method using biologically-relevant data to evaluate the performance of statistical methods.</p> <p>Results</p> <p>Our novel method ranks the probesets from a dataset composed of publicly-available biological microarray data and extracts subset matrices with precise information/noise ratios. Our method can be used to determine the capability of different methods to better estimate variance for a given number of replicates. The mean-variance and mean-fold change relationships of the matrices revealed a closer approximation of biological reality.</p> <p>Conclusions</p> <p>Performance analysis refined the results from benchmarks published previously.</p> <p>We show that the Shrinkage <it>t </it>test (close to Limma) was the best of the methods tested, except when two replicates were examined, where the Regularized <it>t </it>test and the Window <it>t </it>test performed slightly better.</p> <p>Availability</p> <p>The R scripts used for the analysis are available at <url>http://urbm-cluster.urbm.fundp.ac.be/~bdemeulder/</url>.</p> http://www.biomedcentral.com/1471-2105/11/17
collection DOAJ
language English
format Article
sources DOAJ
author Gaigneaux Anthoula
Bareke Eric
Pierre Michael
Berger Fabrice
De Meulder Bertrand
De Hertogh Benoît
Depiereux Eric
spellingShingle Gaigneaux Anthoula
Bareke Eric
Pierre Michael
Berger Fabrice
De Meulder Bertrand
De Hertogh Benoît
Depiereux Eric
A benchmark for statistical microarray data analysis that preserves actual biological and technical variance
BMC Bioinformatics
author_facet Gaigneaux Anthoula
Bareke Eric
Pierre Michael
Berger Fabrice
De Meulder Bertrand
De Hertogh Benoît
Depiereux Eric
author_sort Gaigneaux Anthoula
title A benchmark for statistical microarray data analysis that preserves actual biological and technical variance
title_short A benchmark for statistical microarray data analysis that preserves actual biological and technical variance
title_full A benchmark for statistical microarray data analysis that preserves actual biological and technical variance
title_fullStr A benchmark for statistical microarray data analysis that preserves actual biological and technical variance
title_full_unstemmed A benchmark for statistical microarray data analysis that preserves actual biological and technical variance
title_sort benchmark for statistical microarray data analysis that preserves actual biological and technical variance
publisher BMC
series BMC Bioinformatics
issn 1471-2105
publishDate 2010-01-01
description <p>Abstract</p> <p>Background</p> <p>Recent reanalysis of spike-in datasets underscored the need for new and more accurate benchmark datasets for statistical microarray analysis. We present here a fresh method using biologically-relevant data to evaluate the performance of statistical methods.</p> <p>Results</p> <p>Our novel method ranks the probesets from a dataset composed of publicly-available biological microarray data and extracts subset matrices with precise information/noise ratios. Our method can be used to determine the capability of different methods to better estimate variance for a given number of replicates. The mean-variance and mean-fold change relationships of the matrices revealed a closer approximation of biological reality.</p> <p>Conclusions</p> <p>Performance analysis refined the results from benchmarks published previously.</p> <p>We show that the Shrinkage <it>t </it>test (close to Limma) was the best of the methods tested, except when two replicates were examined, where the Regularized <it>t </it>test and the Window <it>t </it>test performed slightly better.</p> <p>Availability</p> <p>The R scripts used for the analysis are available at <url>http://urbm-cluster.urbm.fundp.ac.be/~bdemeulder/</url>.</p>
url http://www.biomedcentral.com/1471-2105/11/17
work_keys_str_mv AT gaigneauxanthoula abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT barekeeric abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT pierremichael abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT bergerfabrice abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT demeulderbertrand abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT dehertoghbenoit abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT depiereuxeric abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT gaigneauxanthoula benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT barekeeric benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT pierremichael benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT bergerfabrice benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT demeulderbertrand benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT dehertoghbenoit benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
AT depiereuxeric benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance
_version_ 1725342605013680128