A benchmark for statistical microarray data analysis that preserves actual biological and technical variance
<p>Abstract</p> <p>Background</p> <p>Recent reanalysis of spike-in datasets underscored the need for new and more accurate benchmark datasets for statistical microarray analysis. We present here a fresh method using biologically-relevant data to evaluate the performance...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2010-01-01
|
Series: | BMC Bioinformatics |
Online Access: | http://www.biomedcentral.com/1471-2105/11/17 |
id |
doaj-50f29fcce59b49e7af0f8b0ed4b1af65 |
---|---|
record_format |
Article |
spelling |
doaj-50f29fcce59b49e7af0f8b0ed4b1af652020-11-25T00:26:47ZengBMCBMC Bioinformatics1471-21052010-01-011111710.1186/1471-2105-11-17A benchmark for statistical microarray data analysis that preserves actual biological and technical varianceGaigneaux AnthoulaBareke EricPierre MichaelBerger FabriceDe Meulder BertrandDe Hertogh BenoîtDepiereux Eric<p>Abstract</p> <p>Background</p> <p>Recent reanalysis of spike-in datasets underscored the need for new and more accurate benchmark datasets for statistical microarray analysis. We present here a fresh method using biologically-relevant data to evaluate the performance of statistical methods.</p> <p>Results</p> <p>Our novel method ranks the probesets from a dataset composed of publicly-available biological microarray data and extracts subset matrices with precise information/noise ratios. Our method can be used to determine the capability of different methods to better estimate variance for a given number of replicates. The mean-variance and mean-fold change relationships of the matrices revealed a closer approximation of biological reality.</p> <p>Conclusions</p> <p>Performance analysis refined the results from benchmarks published previously.</p> <p>We show that the Shrinkage <it>t </it>test (close to Limma) was the best of the methods tested, except when two replicates were examined, where the Regularized <it>t </it>test and the Window <it>t </it>test performed slightly better.</p> <p>Availability</p> <p>The R scripts used for the analysis are available at <url>http://urbm-cluster.urbm.fundp.ac.be/~bdemeulder/</url>.</p> http://www.biomedcentral.com/1471-2105/11/17 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gaigneaux Anthoula Bareke Eric Pierre Michael Berger Fabrice De Meulder Bertrand De Hertogh Benoît Depiereux Eric |
spellingShingle |
Gaigneaux Anthoula Bareke Eric Pierre Michael Berger Fabrice De Meulder Bertrand De Hertogh Benoît Depiereux Eric A benchmark for statistical microarray data analysis that preserves actual biological and technical variance BMC Bioinformatics |
author_facet |
Gaigneaux Anthoula Bareke Eric Pierre Michael Berger Fabrice De Meulder Bertrand De Hertogh Benoît Depiereux Eric |
author_sort |
Gaigneaux Anthoula |
title |
A benchmark for statistical microarray data analysis that preserves actual biological and technical variance |
title_short |
A benchmark for statistical microarray data analysis that preserves actual biological and technical variance |
title_full |
A benchmark for statistical microarray data analysis that preserves actual biological and technical variance |
title_fullStr |
A benchmark for statistical microarray data analysis that preserves actual biological and technical variance |
title_full_unstemmed |
A benchmark for statistical microarray data analysis that preserves actual biological and technical variance |
title_sort |
benchmark for statistical microarray data analysis that preserves actual biological and technical variance |
publisher |
BMC |
series |
BMC Bioinformatics |
issn |
1471-2105 |
publishDate |
2010-01-01 |
description |
<p>Abstract</p> <p>Background</p> <p>Recent reanalysis of spike-in datasets underscored the need for new and more accurate benchmark datasets for statistical microarray analysis. We present here a fresh method using biologically-relevant data to evaluate the performance of statistical methods.</p> <p>Results</p> <p>Our novel method ranks the probesets from a dataset composed of publicly-available biological microarray data and extracts subset matrices with precise information/noise ratios. Our method can be used to determine the capability of different methods to better estimate variance for a given number of replicates. The mean-variance and mean-fold change relationships of the matrices revealed a closer approximation of biological reality.</p> <p>Conclusions</p> <p>Performance analysis refined the results from benchmarks published previously.</p> <p>We show that the Shrinkage <it>t </it>test (close to Limma) was the best of the methods tested, except when two replicates were examined, where the Regularized <it>t </it>test and the Window <it>t </it>test performed slightly better.</p> <p>Availability</p> <p>The R scripts used for the analysis are available at <url>http://urbm-cluster.urbm.fundp.ac.be/~bdemeulder/</url>.</p> |
url |
http://www.biomedcentral.com/1471-2105/11/17 |
work_keys_str_mv |
AT gaigneauxanthoula abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT barekeeric abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT pierremichael abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT bergerfabrice abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT demeulderbertrand abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT dehertoghbenoit abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT depiereuxeric abenchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT gaigneauxanthoula benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT barekeeric benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT pierremichael benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT bergerfabrice benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT demeulderbertrand benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT dehertoghbenoit benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance AT depiereuxeric benchmarkforstatisticalmicroarraydataanalysisthatpreservesactualbiologicalandtechnicalvariance |
_version_ |
1725342605013680128 |