Temperature-Induced Plasmon Excitations for the <inline-formula><math display="inline"><semantics><mi mathvariant="italic">α</mi></semantics></math></inline-formula>–<inline-formula><math display="inline"><semantics><msub><mi mathvariant="script">T</mi><mn>3</mn></msub></semantics></math></inline-formula> Lattice in Perpendicular Magnetic Field

We have investigated the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>–<inline-formula><math xmlns="http://www.w3.org/1998/M...

Full description

Bibliographic Details
Main Authors: Antonios Balassis, Godfrey Gumbs, Oleksiy Roslyak
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/7/1720
Description
Summary:We have investigated the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">T</mi><mn>3</mn></msub></semantics></math></inline-formula> model in the presence of a mass term which opens a gap in the energy dispersive spectrum, as well as under a uniform perpendicular quantizing magnetic field. The gap opening mass term plays the role of Zeeman splitting at low magnetic fields for this pseudospin-1 system, and, as a consequence, we are able to compare physical properties of the the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>–<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">T</mi><mn>3</mn></msub></semantics></math></inline-formula> model at low and high magnetic fields. Specifically, we explore the magnetoplasmon dispersion relation in these two extreme limits. Central to the calculation of these collective modes is the dielectric function which is determined by the polarizability of the system. This latter function is generated by transition energies between subband states, as well as the overlap of their wave functions.
ISSN:2079-4991