RESRO: A spatio-temporal model to optimise regional energy systems emphasising renewable energies

RESRO (Reference Energy System Regional Optimization) optimises the simultaneous fulfilment of the heat and power demand in regional energy systems. It is a mixed-integer program realised in the modelling language GAMS. The model handles information on geographically disaggregated data describing he...

Full description

Bibliographic Details
Main Authors: Gadocha S., Hausl S., Biberacher M.
Format: Article
Language:English
Published: EDP Sciences 2012-10-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20123301013
Description
Summary:RESRO (Reference Energy System Regional Optimization) optimises the simultaneous fulfilment of the heat and power demand in regional energy systems. It is a mixed-integer program realised in the modelling language GAMS. The model handles information on geographically disaggregated data describing heat demand and renewable energy potentials (e.g. biomass, solar energy, ambient heat). Power demand is handled spatially aggregated in an hourly time resolution within 8 type days. The major idea is to use a high-spatial, low-temporal heat resolution and a low-spatial, hightemporal power resolution with both demand levels linked with each other. Due to high transport losses the possibilities for heat transport over long distances are unsatisfying. Thus, the spatial, raster-based approach is used to identify and utilise renewable energy resources for heat generation close to the customers as well as to optimize district heating grids and related energy flows fed by heating plants or combined heat and power (CHP) plants fuelled by renewables. By combining the heat and electricity sector within the model, it is possible to evaluate relationships between these energy fields such as the use of CHP or heat pump technologies and also to examine relationships between technologies such as solar thermal and photovoltaic facilities, which are in competition for available, suitable roof or ground areas.
ISSN:2100-014X